Edit model card

KDRSSC_ViT2TinyViT-RESISC45_FT

This model is a fine-tuned version of neuralhaven/KDRSSC_ViT2TinyViT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2192
  • Accuracy: 0.9403
  • Precision: 0.9412
  • Recall: 0.9410
  • F1: 0.9406

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 512
  • eval_batch_size: 512
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
3.1125 1.0 37 0.9645 0.911 0.9167 0.9076 0.9069
0.6036 2.0 74 0.2854 0.938 0.9387 0.9394 0.9370
0.4344 3.0 111 0.2315 0.942 0.9412 0.9422 0.9395
0.3572 4.0 148 0.1993 0.948 0.9480 0.9487 0.9464
0.3086 5.0 185 0.2025 0.94 0.9405 0.9391 0.9372
0.2906 6.0 222 0.1979 0.939 0.9394 0.9381 0.9358
0.2567 7.0 259 0.1814 0.943 0.9427 0.9440 0.9413
0.2785 8.0 296 0.1563 0.948 0.9470 0.9484 0.9464
0.2462 9.0 333 0.1509 0.951 0.9508 0.9524 0.9501
0.245 10.0 370 0.1489 0.949 0.9475 0.9492 0.9468

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
23
Safetensors
Model size
9.17M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for neuralhaven/KDRSSC_ViT2TinyViT-RESISC45_FT

Finetuned
(1)
this model