mwitiderrick's picture
Update README.md
842732c verified
|
raw
history blame
2.76 kB
metadata
base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
inference: true
model_type: Llama
tags:
  - nm-vllm
  - sparse

Nous-Hermes-2-SOLAR-10.7B-pruned2.4

This repo contains model files for Nous-Hermes-2-SOLAR-10.7B optimized for NM-vLLM, a high-throughput serving engine for compressed LLMs.

This model was pruned with SparseGPT, using SparseML.

Inference

Install NM-vLLM for fast inference and low memory-usage:

pip install nm-vllm[sparse]

Run in a Python pipeline for local inference:

from vllm import LLM, SamplingParams

model = LLM("nm-testing/Nous-Hermes-2-SOLAR-10.7B-pruned2.4", sparsity="semi_structured_sparse_w16a16")
prompt = "How to make banana bread?"
formatted_prompt =  f"<|im_start|>User:{prompt}\n<|im_start|>assistant:\n"

sampling_params = SamplingParams(max_tokens=100)
outputs = model.generate(formatted_prompt, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
"""
To make banana bread, you will need to follow these steps:

1. Gather the ingredients needed for the recipe: flour, sugar, eggs, baking powder, and banana bread.
2. Preparing the bread by kneading the flour, butter, and sugar in a bowl until it becomes soft.
3. Then, knead the bread with the flour eggs and sugar then bake them in a microwave oven.
4. Once done baking a
"""

Prompt template

### User:
{prompt}
### Assistant:"

Sparsification

For details on how this model was sparsified, see the recipe.yaml in this repo and follow the instructions below.

Install SparseML:

git clone https://github.com/neuralmagic/sparseml
pip install -e "sparseml[transformers]"

Replace the recipe as you like and run this one-shot compression script to apply SparseGPT:

import sparseml.transformers

original_model_name = "NousResearch/Nous-Hermes-2-SOLAR-10.7B"
calibration_dataset = "open_platypus"
output_directory = "output/"

recipe = """
test_stage:
  obcq_modifiers:
    SparseGPTModifier:
      sparsity: 0.5
      sequential_update: true
      mask_structure: '2:4'
      targets: ['re:model.layers.\d*$']
"""

# Apply SparseGPT to the model
sparseml.transformers.oneshot(
    model=original_model_name,
    dataset=calibration_dataset,
    recipe=recipe,
    output_dir=output_directory,
)

Slack

For further support, and discussions on these models and AI in general, join Neural Magic's Slack Community