File size: 2,289 Bytes
cc5667e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
base_model: teknium/OpenHermes-2.5-Mistral-7B
inference: true
model_type: mistral
quantized_by: robertgshaw2
tags:
- nm-vllm
- marlin
- int4
---
## zephyr-7b-beta-marlin
This repo contains model files for [OpenHermes-2.5-Mistral-7b](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) optimized for [nm-vllm](https://github.com/neuralmagic/nm-vllm), a high-throughput serving engine for compressed LLMs.
This model was quantized with [GPTQ](https://arxiv.org/abs/2210.17323) and saved in the Marlin format for efficient 4-bit inference. Marlin is a highly optimized inference kernel for 4 bit models.
## Inference
Install [nm-vllm](https://github.com/neuralmagic/nm-vllm) for fast inference and low memory-usage:
```bash
pip install nm-vllm[sparse]
```
Run in a Python pipeline for local inference:
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
model_id = "neuralmagic/OpenHermes-2.5-Mistral-7B-marlin"
model = LLM(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "user", "content": "What is synthetic data in machine learning?"},
]
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
sampling_params = SamplingParams(max_tokens=200)
outputs = model.generate(formatted_prompt, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
"""
Sure! Here's a simple recipe for banana bread:
Ingredients:
- 3-4 ripe bananas,mashed
- 1 large egg
- 2 Tbsp. Flour
- 2 tsp. Baking powder
- 1 tsp. Baking soda
- 1/2 tsp. Ground cinnamon
- 1/4 tsp. Salt
- 1/2 cup butter, melted
- 3 Cups All-purpose flour
- 1/2 tsp. Ground cinnamon
Instructions:
1. Preheat your oven to 350 F (175 C).
"""
```
## Quantization
For details on how this model was quantized and converted to marlin format, run the `quantization/apply_gptq_save_marlin.py` script:
```bash
pip install -r quantization/requirements.txt
python3 quantization/apply_gptq_save_marlin.py --model-id teknium/OpenHermes-2.5-Mistral-7B --save-dir ./openhermes-marlin
```
## Slack
For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ) |