shubhrapandit's picture
Update README.md
1df50f8 verified
|
raw
history blame
9.46 kB
metadata
tags:
  - vllm
  - vision
  - fp8
license: apache-2.0
license_link: >-
  https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
  - en
base_model: Qwen/Qwen2.5-VL-72B-Instruct
library_name: transformers

Qwen2.5-VL-72B-Instruct-quantized-FP8-Dynamic

Model Overview

  • Model Architecture: Qwen2.5-VL-72B-Instruct
    • Input: Vision-Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: FP8
    • Activation quantization: FP8
  • Release Date: 2/24/2025
  • Version: 1.0
  • Model Developers: Neural Magic

Quantized version of Qwen/Qwen2.5-VL-72B-Instruct.

Model Optimizations

This model was obtained by quantizing the weights of Qwen/Qwen2.5-VL-72B-Instruct to FP8 data type, ready for inference with vLLM >= 0.5.2.

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams

# prepare model
llm = LLM(
    model="neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic",
    trust_remote_code=True,
    max_model_len=4096,
    max_num_seqs=2,
)

# prepare inputs
question = "What is the content of this image?"
inputs = {
    "prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
    "multi_modal_data": {
        "image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
    },
}

# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT  : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")

vLLM also supports OpenAI-compatible serving. See the documentation for more details.

Creation

This model was created with llm-compressor by running the code snippet below as part a multimodal announcement blog.

Model Creation Code
import requests
import torch
from PIL import Image
from transformers import AutoProcessor
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.tracing import (
    TraceableQwen2_5_VLForConditionalGeneration,
)
from llmcompressor.modifiers.quantization import QuantizationModifier

# Load model.
model_id = Qwen/Qwen2.5-VL-72B-Instruct
model = TraceableQwen2_5_VLForConditionalGeneration.from_pretrained(
    model_id, device_map="auto", torch_dtype="auto"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

# Recipe
recipe = [
    QuantizationModifier(
        targets="Linear",
        scheme="FP8_DYNAMIC",
        sequential_targets=["MistralDecoderLayer"],
        ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
    ),
]

SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic"

# Perform oneshot
oneshot(
    model=model,
    recipe=recipe,
    trust_remote_code_model=True,
    output_dir=SAVE_DIR
)

Evaluation

The model was evaluated on OpenLLM Leaderboard V1, OpenLLM Leaderboard V2 and on HumanEval, using the following commands:

Evaluation Commands

Accuracy

Inference Performance

This model achieves up to xxx speedup in single-stream deployment and up to xxx speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario. The following performance benchmarks were conducted with vLLM version 0.7.2, and GuideLLM.

Benchmarking Command ``` guidellm --model neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=,generated_tokens=,images=,width=,height= --max seconds 120 --backend aiohttp_server ```

Single-stream performance (measured with vLLM version 0.7.2)

Document Visual Question Answering
1680W x 2240H
64/128
Visual Reasoning
640W x 480H
128/128
Image Captioning
480W x 360H
0/128
Hardware Number of GPUs Model Average Cost Reduction Latency (s) Queries Per Dollar Latency (s)th> Queries Per Dollar Latency (s) Queries Per Dollar
A100 4 Qwen/Qwen2.5-VL-72B-Instruct 6.4 78 4.5 111 4.4 113
2 neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8 1.85 7.0 143 4.9 205 4.8 211
1 neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16 3.33 9.4 213 5.1 396 4.8 420
H100 4 Qwen/Qwen2.5-VL-72B-Instruct 4.3 68 3.0 97 2.9 100
2 neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic 1.79 4.6 122 3.3 173 3.2 177
1 neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16 5.66 4.3 252 4.3 252 1.0 1065

**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens

**QPD: Queries per dollar, based on on-demand cost at Lambda Labs (observed on 2/18/2025).

Multi-stream asynchronous performance (measured with vLLM version 0.7.2)

Document Visual Question Answering
1680W x 2240H
64/128
Visual Reasoning
640W x 480H
128/128
Image Captioning
480W x 360H
0/128
Hardware Model Average Cost Reduction Maximum throughput (QPS) Queries Per Dollar Maximum throughput (QPS) Queries Per Dollar Maximum throughput (QPS) Queries Per Dollar
A100x4 Qwen/Qwen2.5-VL-72B-Instruct 0.4 180 1.1 539 1.2 595
neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8 1.80 1.2 289 4.0 1020 4.6 1133
neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16 2.75 2.8 341 12.8 1588 16.4 2037
H100x4 Qwen/Qwen2.5-VL-72B-Instruct 0.5 134 1.2 357 1.3 379
neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic 1.73 1.8 247 4.4 621 4.8 669
neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16 8.27 13.2 913 13.2 913 99.2 6777

**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens

**QPS: Queries per second.

**QPD: Queries per dollar, based on on-demand cost at Lambda Labs (observed on 2/18/2025).