alexmarques's picture
Create README.md
678600f verified
---
library_name: transformers
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- int8
- vllm
base_model: HuggingFaceTB/SmolLM-135M-Instruct
---
# SmolLM-135M-Instruct-quantized.w8a8
## Model Overview
- **Model Architecture:** Llama
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Activation quantization:** INT8
- **Weight quantization:** INT8
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M-Instruct), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 8/22/2024
- **Version:** 1.0
- **License(s):** [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)
- **Model Developers:** Neural Magic
Quantized version of [SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M-Instruct).
It achieves an average score of 31.77 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 31.88.
### Model Optimizations
This model was obtained by quantizing the weights of [SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M-Instruct) to INT8 data type.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks are quantized.
Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension.
Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations.
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
GPTQ used a 1% damping factor and 1,024 sequences sequences taken from Neural Magic's [LLM compression calibration dataset](https://huggingface.co/datasets/neuralmagic/LLM_compression_calibration).
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic/SmolLM-135M-Instruct-quantized.w8a8"
sampling_params = SamplingParams(temperature=0.6, top_p=0.92, max_tokens=100)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "user", "content": "List the steps to bake a chocolate cake from scratch."},
]
prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
llm = LLM(model=model_id)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.
```python
from transformers import AutoTokenizer
from datasets import Dataset
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
import random
model_id = "HuggingFaceTB/SmolLM-135M-Instruct"
num_samples = 1024
max_seq_len = 2048
tokenizer = AutoTokenizer.from_pretrained(model_id)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)
recipe = GPTQModifier(
targets="Linear",
scheme="W8A8",
ignore=["lm_head"],
dampening_frac=0.01,
)
model = SparseAutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
)
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
model.save_pretrained("SmolLM-135M-Instruct-quantized.w8a8")
```
## Evaluation
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/SmolLM-135M-Instruct-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
--tasks openllm \
--batch_size auto
```
### Accuracy
#### Open LLM Leaderboard evaluation scores
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>SmolLM-135M-Instruct-quantized</strong>
</td>
<td><strong>SmolLM-135M-Instruct-quantized.w8a8 (this model)</strong>
</td>
<td><strong>Recovery</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>26.83
</td>
<td>26.45
</td>
<td>98.6%
</td>
</tr>
<tr>
<td>ARC Challenge (25-shot)
</td>
<td>31.31
</td>
<td>31.14
</td>
<td>99.5%
</td>
</tr>
<tr>
<td>GSM-8K (5-shot, strict-match)
</td>
<td>0.68
</td>
<td>0.99
</td>
<td>144.4%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>40.57
</td>
<td>40.54
</td>
<td>99.9%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>52.41
</td>
<td>51.54
</td>
<td>98.3%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot)
</td>
<td>39.46
</td>
<td>39.97
</td>
<td>101.3%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>31.88</strong>
</td>
<td><strong>31.77</strong>
</td>
<td><strong>99.7%</strong>
</td>
</tr>
</table>