Files changed (1) hide show
  1. README.md +146 -1
README.md CHANGED
@@ -1,5 +1,150 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  base_model:
3
  - mistral-community/pixtral-12b
4
  - mistralai/Pixtral-12B-2409
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - fp8
4
+ - vllm
5
+ language:
6
+ - en
7
+ - de
8
+ - fr
9
+ - it
10
+ - pt
11
+ - hi
12
+ - es
13
+ - th
14
+ pipeline_tag: text-generation
15
  base_model:
16
  - mistral-community/pixtral-12b
17
  - mistralai/Pixtral-12B-2409
18
+ ---
19
+
20
+ # pixtral-12b-FP8-dynamic
21
+
22
+ ## Model Overview
23
+ - **Model Architecture:** Llava
24
+ - **Input:** Text/Image
25
+ - **Output:** Text
26
+ - **Model Optimizations:**
27
+ - **Weight quantization:** FP8
28
+ - **Activation quantization:** FP8
29
+ - **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similar to [mistral-community/pixtral-12b](https://huggingface.co/mistral-community/pixtral-12b), this models is intended for assistant-like chat.
30
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
31
+ - **Release Date:** 11/1/2024
32
+ - **Version:** 1.0
33
+ - **License(s):**
34
+ - **Model Developers:** Neural Magic
35
+
36
+ Quantized version of [mistral-community/pixtral-12b](https://huggingface.co/mistral-community/pixtral-12b).
37
+
38
+ ### Model Optimizations
39
+
40
+ This model was obtained by quantizing the weights and activations of [mistral-community/pixtral-12b](https://huggingface.co/mistral-community/pixtral-12b) to FP8 data type, ready for inference with vLLM built from source.
41
+ This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
42
+
43
+ Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations. Activations are also quantized on a per-token dynamic basis.
44
+ [LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization.
45
+
46
+ ## Deployment
47
+
48
+ ### Use with vLLM
49
+
50
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
51
+
52
+ ```python
53
+ from vllm import LLM, SamplingParams
54
+ from vllm.assets.image import ImageAsset
55
+
56
+ # Initialize the LLM
57
+ model_name = "neuralmagic/pixtral-12b-FP8-dynamic"
58
+ llm = LLM(model=model_name, max_num_seqs=1, enforce_eager=True)
59
+
60
+ # Load the image
61
+ image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
62
+
63
+ # Create the prompt
64
+ question = "If I had to write a haiku for this one, it would be: "
65
+ prompt = f"<|image|><|begin_of_text|>{question}"
66
+
67
+ # Set up sampling parameters
68
+ sampling_params = SamplingParams(temperature=0.2, max_tokens=30)
69
+
70
+ # Generate the response
71
+ inputs = {
72
+ "prompt": prompt,
73
+ "multi_modal_data": {
74
+ "image": image
75
+ },
76
+ }
77
+ outputs = llm.generate(inputs, sampling_params=sampling_params)
78
+
79
+ # Print the generated text
80
+ print(outputs[0].outputs[0].text)
81
+ ```
82
+
83
+ vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
84
+
85
+ ```
86
+ vllm serve neuralmagic/pixtral-12b-FP8-dynamic --max-num-seqs 16
87
+ ```
88
+
89
+ ## Creation
90
+
91
+ This model was created by applying [LLM Compressor](https://github.com/vllm-project/llm-compressor/blob/f90013702b15bd1690e4e2fe9ed434921b6a6199/examples/quantization_w8a8_fp8/llama3.2_vision_example.py), as presented in the code snipet below.
92
+
93
+ ```python
94
+ from transformers import AutoProcessor, LlavaForConditionalGeneration
95
+
96
+ from llmcompressor.modifiers.quantization import QuantizationModifier
97
+ from llmcompressor.transformers import oneshot, wrap_hf_model_class
98
+
99
+ MODEL_ID = "mistral-community/pixtral-12b"
100
+
101
+ # Load model.
102
+ model_class = wrap_hf_model_class(LlavaForConditionalGeneration)
103
+ model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto")
104
+ processor = AutoProcessor.from_pretrained(MODEL_ID)
105
+
106
+ # Configure the quantization algorithm and scheme.
107
+ # In this case, we:
108
+ # * quantize the weights to fp8 with per channel via ptq
109
+ # * quantize the activations to fp8 with dynamic per token
110
+ recipe = QuantizationModifier(
111
+ targets="Linear",
112
+ scheme="FP8_DYNAMIC",
113
+ ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_model.*"],
114
+ )
115
+
116
+ # Apply quantization and save to disk in compressed-tensors format.
117
+ SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
118
+ oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR)
119
+ processor.save_pretrained(SAVE_DIR)
120
+
121
+ # Confirm generations of the quantized model look sane.
122
+ print("========== SAMPLE GENERATION ==============")
123
+ input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda")
124
+ output = model.generate(input_ids, max_new_tokens=20)
125
+ print(processor.decode(output[0]))
126
+ print("==========================================")
127
+ ```
128
+
129
+ ## Evaluation
130
+
131
+ ### Multimodal Benchmarks
132
+
133
+ | | pixtral-12b | pixtral-12b-FP8-dynamic |
134
+ |:-------------------:|:-------------:|:----------:|
135
+ | **MMMU** *(CoT)* | 49.44 | 51.11 |
136
+ | **Mathvista** *(CoT)* | 58.1 | 59.4 |
137
+ | **ChartQA** *(CoT)* | 82.64 | 82.68 |
138
+ | **DocVQA** *(ANLS)* | 89.36 | 89.35 |
139
+
140
+ ### Text Benchmarks
141
+
142
+ | | pixtral-12b | pixtral-12b-FP8-dynamic |
143
+ |:-------------------:|:-------------:|:----------:|
144
+ | **MMLU** *(5-shot)* | 69.27 | 68.96 |
145
+ | **Math** *(0-shot)* | 43.82 | 43.27 |
146
+ | **Human Eval** *(Pass@1)* | 77.80 | 76.4 |
147
+
148
+ ### Reproduction
149
+
150
+ TBD