Gemma-2-9b-it-tr
Gemma-2-9b-it-tr is a finetuned version of google/gemma-2-9b-it on a carefully curated and manually filtered dataset of 55k question answering and conversational samples in Turkish.
Training Details
Base model: google/gemma-2-9b-it
Training data: A filtered version of metedb/turkish_llm_datasets and a small private dataset of 8k conversational samples on various topics.
Training setup: We performed supervised fine tuning with LoRA with rank=128
and lora_alpha
=64. Training took 4 days on a single RTX 6000 Ada.
Compared to the base model, we find Gemma-2-9b-tr has superior conversational and reasoning skills.
Usage
You can load and use neuralwork/gemma-2-9b-it-tr
as follows.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"neuralwork/gemma-2-9b-it-tr",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("neuralwork/gemma-2-9b-it-tr")
messages = [
{"role": "user", "content": "Python'da bir öğenin bir listede geçip geçmediğini nasıl kontrol edebilirim?"},
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
outputs = model.generate(
tokenizer(prompt, return_tensors="pt").input_ids.to(model.device),
max_new_tokens=1024,
do_sample=True,
temperature=0.7,
top_p=0.9
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)[len(prompt):]
print(response)
- Downloads last month
- 45
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.