Update README.md
Browse files
README.md
CHANGED
@@ -8,33 +8,33 @@ base_model:
|
|
8 |
pipeline_tag: text-generation
|
9 |
---
|
10 |
|
11 |
-
# Gemma-2-9b-tr
|
12 |
|
13 |
-
Gemma-2-9b-tr is a finetuned version of [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on a carefully curated and manually filtered dataset of 55k question answering and conversational samples in Turkish.
|
14 |
|
15 |
|
16 |
## Training Details
|
17 |
-
**Base model:** [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
|
18 |
-
**Training data:** A filtered version of [metedb/turkish_llm_datasets](https://huggingface.co/datasets/metedb/turkish_llm_datasets/) and a small private dataset of 8k conversational samples on various topics.
|
19 |
-
**Training setup:** We performed supervised fine tuning with LoRA with `rank=128` and `lora_alpha`=64. Training took 4 days on a single RTX 6000 Ada.
|
20 |
|
21 |
Compared to the base model, we find Gemma-2-9b-tr has superior conversational and reasoning skills.
|
22 |
|
23 |
## Usage
|
24 |
-
You can load and use `
|
25 |
|
26 |
```py
|
27 |
import torch
|
28 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
29 |
|
30 |
model = AutoModelForCausalLM.from_pretrained(
|
31 |
-
"neuralwork/gemma-2-9b-tr",
|
32 |
torch_dtype=torch.bfloat16,
|
33 |
device_map="auto",
|
34 |
trust_remote_code=True
|
35 |
)
|
36 |
|
37 |
-
tokenizer = AutoTokenizer.from_pretrained("neuralwork/gemma-2-9b-tr")
|
38 |
|
39 |
messages = [
|
40 |
{"role": "user", "content": "Python'da bir öğenin bir listede geçip geçmediğini nasıl kontrol edebilirim?"},
|
|
|
8 |
pipeline_tag: text-generation
|
9 |
---
|
10 |
|
11 |
+
# Gemma-2-9b-it-tr
|
12 |
|
13 |
+
Gemma-2-9b-it-tr is a finetuned version of [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on a carefully curated and manually filtered dataset of 55k question answering and conversational samples in Turkish.
|
14 |
|
15 |
|
16 |
## Training Details
|
17 |
+
**Base model:** [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
|
18 |
+
**Training data:** A filtered version of [metedb/turkish_llm_datasets](https://huggingface.co/datasets/metedb/turkish_llm_datasets/) and a small private dataset of 8k conversational samples on various topics.
|
19 |
+
**Training setup:** We performed supervised fine tuning with LoRA with `rank=128` and `lora_alpha`=64. Training took 4 days on a single RTX 6000 Ada.
|
20 |
|
21 |
Compared to the base model, we find Gemma-2-9b-tr has superior conversational and reasoning skills.
|
22 |
|
23 |
## Usage
|
24 |
+
You can load and use `neuralwork/gemma-2-9b-it-tr`as follows.
|
25 |
|
26 |
```py
|
27 |
import torch
|
28 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
29 |
|
30 |
model = AutoModelForCausalLM.from_pretrained(
|
31 |
+
"neuralwork/gemma-2-9b-it-tr",
|
32 |
torch_dtype=torch.bfloat16,
|
33 |
device_map="auto",
|
34 |
trust_remote_code=True
|
35 |
)
|
36 |
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained("neuralwork/gemma-2-9b-it-tr")
|
38 |
|
39 |
messages = [
|
40 |
{"role": "user", "content": "Python'da bir öğenin bir listede geçip geçmediğini nasıl kontrol edebilirim?"},
|