You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
NONE
  • 'How do I learn to play the guitar?'
  • "What's the longest river in the world?"
  • 'How do I overcome procrastination?'
KUBIE
  • 'What logs should I check to identify container crashes in the qa-soc-svcs namespace?'
  • 'Can you suggest ways to troubleshoot an image pull error in the "kube-public" namespace?'
  • "I'm encountering errors with a pod in the sandbox-6 namespace. Any suggestions on how to debug it?"
aws_iam
  • 'Show me the IAM role details including attached policies.'
  • 'Show me the IAM roles that have the "admin" prefix.'
  • 'How can I get detailed information about a particular IAM role?'
DOC
  • 'How to access ArgoCD on Production?'
  • 'How to run terraform in CDO?'
  • 'How to push images to dockerhub.cisco.com?'
access_management
  • 'Access to prod-aws infrastructure is required urgently for a deployment.'
  • 'Could you provide me access to the dev-aws resources?'
  • 'I require access to the prod-sagemaker instance for machine learning experiments.'

Evaluation

Metrics

Label Accuracy
all 0.9962

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("How can I reduce stress?")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 8.5408 17
Label Training Sample Count
aws_iam 20
access_management 20
DOC 18
KUBIE 20
NONE 20

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0021 1 0.2675 -
0.1042 50 0.1143 -
0.2083 100 0.0578 -
0.3125 150 0.0028 -
0.4167 200 0.0032 -
0.5208 250 0.0007 -
0.625 300 0.0006 -
0.7292 350 0.0004 -
0.8333 400 0.0005 -
0.9375 450 0.0006 -
1.0 480 - 0.0027
1.0417 500 0.0004 -
1.1458 550 0.0002 -
1.25 600 0.0003 -
1.3542 650 0.0002 -
1.4583 700 0.0002 -
1.5625 750 0.0002 -
1.6667 800 0.0002 -
1.7708 850 0.0002 -
1.875 900 0.0002 -
1.9792 950 0.0001 -
2.0 960 - 0.0032
2.0833 1000 0.0001 -
2.1875 1050 0.0002 -
2.2917 1100 0.0001 -
2.3958 1150 0.0002 -
2.5 1200 0.0002 -
2.6042 1250 0.0001 -
2.7083 1300 0.0002 -
2.8125 1350 0.0001 -
2.9167 1400 0.0001 -
3.0 1440 - 0.004
3.0208 1450 0.0001 -
3.125 1500 0.0001 -
3.2292 1550 0.0002 -
3.3333 1600 0.0002 -
3.4375 1650 0.0001 -
3.5417 1700 0.0002 -
3.6458 1750 0.0001 -
3.75 1800 0.0001 -
3.8542 1850 0.0001 -
3.9583 1900 0.0002 -
4.0 1920 - 0.0037
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.9.6
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • Transformers: 4.40.1
  • PyTorch: 2.1.2
  • Datasets: 2.19.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
0
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nghodki/setfit-sre-task-classifier

Finetuned
(260)
this model

Evaluation results