File size: 7,622 Bytes
d710c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca39bed
d710c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142b2b1
 
d710c3f
 
 
2ab3e8a
 
d710c3f
 
142b2b1
d710c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0634956
d710c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab3e8a
d710c3f
 
 
2ab3e8a
 
 
 
 
 
 
 
 
d710c3f
 
 
 
 
 
 
 
 
 
 
 
 
eef3f34
d710c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from timm.models.layers import trunc_normal_ as __call_trunc_normal_
from torchscale.component.multiway_network import MutliwayEmbedding
from torchscale.component.embedding import PositionalEmbedding
from torchscale.architecture.encoder import Encoder
from transformers import PreTrainedModel
import torch.nn as nn
import torch.nn.functional as F
import torch
import math
from transformers import AutoModel
from transformers.utils.generic import ModelOutput
from dataclasses import dataclass
from typing import Optional
from efficientnet_pytorch import EfficientNet
from lavis.common.registry import registry
from .configuration_vivqa import ViVQAConfig

class BartPhoExtractor(nn.Module):
    def __init__(self):
        super(BartPhoExtractor, self).__init__()
        self.bartpho_word = AutoModel.from_pretrained("vinai/bartpho-word")
        
    def forward(self, input_ids, attention_mask):
        last_hidden_states = self.bartpho_word(input_ids, attention_mask)
        features = last_hidden_states[0]
        return features
    
class Blip2EfficientExtractor(nn.Module):
    def __init__(self):
        super(Blip2EfficientExtractor, self).__init__()
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        
        # BLIP-2
        self.model_blip2 = registry.get_model_class(name="blip2_feature_extractor").from_pretrained(model_type="pretrain").to(self.device)
        if self.device == "cpu" or self.device == torch.device("cpu"):
            self.model_blip2 = self.model_blip2.float()
        self.model_blip2.eval()
        
        # Efficientnet
        self.model_efficientnet = EfficientNet.from_pretrained('efficientnet-b7', advprop=True).to(self.device)
        self.model_efficientnet.eval()
        self.pooling1 = nn.AdaptiveAvgPool2d((1, 32))
        self.pooling2 = nn.AdaptiveAvgPool2d((1, 768))
        
    def forward(self, images):

        global_features = self.model_blip2.extract_features(samples={"image": images}, mode="image").image_embeds
        
        local_features = self.model_efficientnet.extract_features(images)
        local_features = self.pooling1(local_features)
        local_features = local_features.permute(0, 3, 2, 1)
        local_features = self.pooling2(local_features)
        batch_size = images.shape[0]
        local_features = local_features.reshape(batch_size, local_features.shape[1], -1)
        
        v = torch.cat([global_features, local_features], dim=1)
        return v
        
@dataclass
class ViVQAOutput(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
        
def trunc_normal_(tensor, mean=0., std=1.):
    __call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std)
    
class Pooler(nn.Module):
    def __init__(self, input_features, output_features, norm_layer):
        super().__init__()
        self.norm = norm_layer(input_features)
        self.dense = nn.Linear(input_features, output_features)
        self.activation = nn.Tanh()

    def forward(self, x):
        cls_rep = x[:, 0, :]
        cls_rep = self.norm(cls_rep)
        pooled_output = self.dense(cls_rep)
        pooled_output = self.activation(pooled_output)
        return pooled_output

class ViVQABEiT3(PreTrainedModel):
    def __init__(self, args):
        super().__init__(args)
        assert args.multiway
        assert not args.share_encoder_input_output_embed
        
        self.text_embed = BartPhoExtractor()
        
        self.vision_embed = Blip2EfficientExtractor()
        for param in self.vision_embed.parameters():
            param.requires_grad = False

            
        self.linear = nn.Linear(1024, 768)
        
        # being consistent with Fairseq, which starts from 2 for position embedding
        num_position_embeddings = 64
        embed_positions = MutliwayEmbedding(
            modules=[
                PositionalEmbedding(num_position_embeddings + 2, args.encoder_embed_dim),
                PositionalEmbedding(args.max_source_positions, args.encoder_embed_dim),
            ],
            dim=1,
        )
        self.encoder = Encoder(
            args,
            embed_tokens=None,
            embed_positions=embed_positions,
            output_projection=None,
            is_encoder_decoder=False,
        )

    def forward(self, textual_tokens, visual_tokens, text_padding_position):
        x1 = self.vision_embed(visual_tokens)
        multiway_split_position = x1.size(1)
        
        x2 = self.text_embed(textual_tokens, 1-text_padding_position)
        x2 = self.linear(x2)
        
        x = torch.cat([x1, x2], dim=1)

        encoder_padding_mask = torch.cat(
            [
                torch.zeros(x1.shape[:-1]).to(x1.device).bool(),
                text_padding_position,
            ],
            dim=1,
        )

        encoder_out = self.encoder(
            src_tokens=None,
            encoder_padding_mask=encoder_padding_mask,
            token_embeddings=x,
            multiway_split_position=multiway_split_position
        )
        encoder_out["multiway_split_position"] = multiway_split_position
        return encoder_out
    
class BEiT3Wrapper(PreTrainedModel):
    def __init__(self, args, **kwargs):
        super().__init__(args)
        self.beit3 = ViVQABEiT3(args)
        # self.apply(self._init_weights)

    def fix_init_weight(self):
        def rescale(param, layer_id):
            param.div_(math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.blocks):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.mlp.fc2.weight.data, layer_id + 1)

    def get_num_layers(self):
        return self.beit3.encoder.num_layers
    
    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token', 'beit3.encoder.embed_positions.A.weight', 'beit3.vision_embed.cls_token', 'logit_scale'}

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
    

class BEiT3ForVietnameseVisualQuestionAnswering(BEiT3Wrapper):
    config_class = ViVQAConfig
    def __init__(
            self, 
            args, 
            num_classes=353, 
            **kwargs
    ):
        super(BEiT3ForVietnameseVisualQuestionAnswering, self).__init__(args=args)
        embed_dim = args.encoder_embed_dim
        self.pooler = Pooler(
            input_features=embed_dim, 
            output_features=embed_dim, 
            norm_layer=nn.LayerNorm,
        )
        self.pooler.apply(self._init_weights)
        self.head = nn.Sequential(
            nn.Linear(embed_dim, embed_dim * 2),
            nn.LayerNorm(embed_dim * 2), 
            nn.GELU(),
            nn.Linear(embed_dim * 2, num_classes), 
        )
        self.head.apply(self._init_weights)

    def forward(self, image, question, padding_mask, labels=None, **kwargs):        
        outputs = self.beit3(
            textual_tokens=question, 
            visual_tokens=image, 
            text_padding_position=padding_mask, 
        )
        x = outputs["encoder_out"]
        cls_rep = self.pooler(x)
        logits = self.head(cls_rep)
        
        loss = None
        if labels is not None:
            loss = F.cross_entropy(logits, labels)
            
        return ViVQAOutput(
            loss=loss,
            logits=logits,
        )