See axolotl config
axolotl version: 0.6.0
base_model: /workspace/models/llama-3.2-3b-wizard
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: llama3
datasets:
- path: json
data_files:
- /workspace/data/numina-20k/train.jsonl
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
val_set_size: 0.0
output_dir: /workspace/models/llama-3.2-3b-math
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: constant
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 2
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
save_total_limit: 10
debug:
deepspeed: /workspace/axolotl-0.6.0/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
workspace/models/llama-3.2-3b-math
This model was trained from scratch on the json dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.