|
--- |
|
base_model: |
|
- meta-llama/Llama-3.2-1B-Instruct |
|
language: |
|
- en |
|
- vi |
|
license: apache-2.0 |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
- Ollama |
|
- Tool-Calling |
|
datasets: |
|
- nguyenthanhthuan/function-calling-sharegpt |
|
--- |
|
# Function Calling Llama Model Version 2 |
|
|
|
## Overview |
|
A specialized fine-tuned version of the **`meta-llama/Llama-3.2-1B-Instruct`** model enhanced with function/tool calling capabilities. The model leverages the **`nguyenthanhthuan/function-calling-sharegpt`** dataset for training. |
|
|
|
## Model Specifications |
|
|
|
* **Base Architecture**: meta-llama/Llama-3.2-1B-Instruct |
|
* **Primary Language**: English (Function/Tool Calling), Vietnamese |
|
* **Licensing**: Apache 2.0 |
|
* **Primary Developer**: nguyenthanhthuan_banhmi |
|
* **Key Capabilities**: text-generation-inference, transformers, unsloth, llama, trl, Ollama, Tool-Calling |
|
|
|
## Getting Started |
|
|
|
### Prerequisites |
|
Method 1: |
|
1. Install [Ollama](https://ollama.com/) |
|
2. Install required Python packages: |
|
```bash |
|
pip install langchain pydantic torch langchain-ollama langchain_core |
|
``` |
|
Method 2: |
|
1. Click use this model |
|
2. Click Ollama |
|
|
|
### Installation Steps |
|
|
|
1. Clone the repository |
|
2. Navigate to the project directory |
|
3. Create the model in Ollama: |
|
```bash |
|
ollama create <model_name> -f <path_to_modelfile> |
|
``` |
|
|
|
## Implementation Guide |
|
|
|
### Model Initialization |
|
|
|
```python |
|
from langchain_ollama import ChatOllama |
|
|
|
# Initialize model instance |
|
llm = ChatOllama(model="<model_name>") |
|
``` |
|
|
|
### Basic Usage Example |
|
|
|
```python |
|
# Arithmetic computation example |
|
query = "What is 3 * 12? Also, what is 11 + 49?" |
|
response = llm.invoke(query) |
|
|
|
print(response.content) |
|
# Output: |
|
# 1. 3 times 12 is 36. |
|
# 2. 11 plus 49 is 60. |
|
``` |
|
|
|
### Advanced Function Calling (English Recommended) |
|
|
|
#### Basic Arithmetic Tools (Different from the first version) |
|
```python |
|
from pydantic import BaseModel |
|
|
|
# Note that the docstrings here are crucial, as they will be passed along |
|
# to the model along with the class name. |
|
class add(BaseModel): |
|
"""Add two integers together.""" |
|
|
|
a: int = Field(..., description="First integer") |
|
b: int = Field(..., description="Second integer") |
|
|
|
class multiply(BaseModel): |
|
"""Multiply two integers together.""" |
|
|
|
a: int = Field(..., description="First integer") |
|
b: int = Field(..., description="Second integer") |
|
|
|
tools = [add, multiply] |
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
# Execute query and parser result (Different from the first version) |
|
from langchain_core.output_parsers.openai_tools import PydanticToolsParser |
|
|
|
query = "What is 3 * 12? Also, what is 11 + 49?" |
|
chain = llm_with_tools | PydanticToolsParser(tools=tools) |
|
result = chain.invoke(query) |
|
print(result) |
|
|
|
# Output: |
|
# [multiply(a=3, b=12), add(a=11, b=49)] |
|
``` |
|
|
|
#### Complex Tool Integration (Different from the first version) |
|
|
|
```python |
|
from pydantic import BaseModel, Field |
|
from typing import List, Optional |
|
|
|
class SendEmail(BaseModel): |
|
"""Send an email to specified recipients.""" |
|
|
|
to: List[str] = Field(..., description="List of email recipients") |
|
subject: str = Field(..., description="Email subject") |
|
body: str = Field(..., description="Email content/body") |
|
cc: Optional[List[str]] = Field(None, description="CC recipients") |
|
attachments: Optional[List[str]] = Field(None, description="List of attachment file paths") |
|
|
|
class WeatherInfo(BaseModel): |
|
"""Get weather information for a specific location.""" |
|
|
|
city: str = Field(..., description="City name") |
|
country: Optional[str] = Field(None, description="Country name") |
|
units: str = Field("celsius", description="Temperature units (celsius/fahrenheit)") |
|
|
|
class SearchWeb(BaseModel): |
|
"""Search the web for given query.""" |
|
|
|
query: str = Field(..., description="Search query") |
|
num_results: int = Field(5, description="Number of results to return") |
|
language: str = Field("en", description="Search language") |
|
|
|
class CreateCalendarEvent(BaseModel): |
|
"""Create a calendar event.""" |
|
|
|
title: str = Field(..., description="Event title") |
|
start_time: str = Field(..., description="Event start time (ISO format)") |
|
end_time: str = Field(..., description="Event end time (ISO format)") |
|
description: Optional[str] = Field(None, description="Event description") |
|
attendees: Optional[List[str]] = Field(None, description="List of attendee emails") |
|
|
|
class TranslateText(BaseModel): |
|
"""Translate text between languages.""" |
|
|
|
text: str = Field(..., description="Text to translate") |
|
source_lang: str = Field(..., description="Source language code (e.g., 'en', 'es')") |
|
target_lang: str = Field(..., description="Target language code (e.g., 'fr', 'de')") |
|
|
|
class SetReminder(BaseModel): |
|
"""Set a reminder for a specific time.""" |
|
|
|
message: str = Field(..., description="Reminder message") |
|
time: str = Field(..., description="Reminder time (ISO format)") |
|
priority: str = Field("normal", description="Priority level (low/normal/high)") |
|
tools = [ |
|
SendEmail, |
|
WeatherInfo, |
|
SearchWeb, |
|
CreateCalendarEvent, |
|
TranslateText, |
|
SetReminder |
|
] |
|
llm_tools = llm.bind_tools(tools) |
|
|
|
# # Execute query and parser result (Different from the first version) |
|
from langchain_core.output_parsers.openai_tools import PydanticToolsParser |
|
|
|
query = "Set a reminder to call John at 3 PM tomorrow. Also, translate 'Hello, how are you?' to Spanish." |
|
chain = llm_tools | PydanticToolsParser(tools=tools) |
|
result = chain.invoke(query) |
|
print(result) |
|
|
|
# Output: |
|
# [SetReminder(message='Set a reminder for a specific time.', time='3 PM tomorrow', priority='normal'), |
|
# TranslateText(text='Hello, how are you?', source_lang='en', target_lang='es')] |
|
``` |
|
|
|
## Core Features |
|
|
|
* Arithmetic computation support |
|
* Advanced function/tool calling capabilities |
|
* Seamless Langchain integration |
|
* Full Ollama platform compatibility |
|
|
|
## Technical Details |
|
|
|
### Dataset Information |
|
Training utilized the **`nguyenthanhthuan/function-calling-sharegpt`** dataset, featuring comprehensive function calling interaction examples. |
|
|
|
### Known Limitations |
|
|
|
* Basic function/tool calling |
|
* English language support exclusively |
|
* Ollama installation dependency |
|
|
|
## Important Notes & Considerations |
|
|
|
### Potential Limitations and Edge Cases |
|
|
|
* **Function Parameter Sensitivity**: The model may occasionally misinterpret complex parameter combinations, especially when multiple optional parameters are involved. Double-check parameter values in critical applications. |
|
|
|
* **Response Format Variations**: |
|
- In some cases, the function calling format might deviate from the expected JSON structure |
|
- The model may generate additional explanatory text alongside the function call |
|
- Multiple function calls in a single query might not always be processed in the expected order |
|
|
|
* **Error Handling Considerations**: |
|
- Empty or null values might not be handled consistently across different function types |
|
- Complex nested objects may sometimes be flattened unexpectedly |
|
- Array inputs might occasionally be processed as single values |
|
|
|
### Best Practices for Reliability |
|
|
|
1. **Input Validation**: |
|
- Always validate input parameters before processing |
|
- Implement proper error handling for malformed function calls |
|
- Consider adding default values for optional parameters |
|
|
|
2. **Testing Recommendations**: |
|
- Test with various input combinations and edge cases |
|
- Implement retry logic for inconsistent responses |
|
- Log and monitor function call patterns for debugging |
|
|
|
3. **Performance Optimization**: |
|
- Keep function descriptions concise and clear |
|
- Limit the number of simultaneous function calls |
|
- Cache frequently used function results when possible |
|
|
|
### Known Issues |
|
|
|
* Model may struggle with: |
|
- Very long function descriptions |
|
- Highly complex nested parameter structures |
|
- Ambiguous or overlapping function purposes |
|
- Non-English parameter values or descriptions |
|
|
|
## Development |
|
|
|
### Contributing Guidelines |
|
We welcome contributions through issues and pull requests for improvements and bug fixes. |
|
|
|
### License Information |
|
Released under Apache 2.0 license. See LICENSE file for complete terms. |
|
|
|
## Academic Citation |
|
|
|
```bibtex |
|
@misc{function-calling-llama, |
|
author = {nguyenthanhthuan_banhmi}, |
|
title = {Function Calling Llama Model Version 2} , |
|
year = {2024}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository} |
|
} |
|
``` |