nguyenvulebinh's picture
Update README.md
5af41c2
|
raw
history blame
2.04 kB
---
language: vi
datasets:
- VLSP 2020 ASR dataset
- VIVOS
tags:
- audio
- automatic-speech-recognition
license: apache-2.0
widget:
- label: VLSP ASR 2020 test T1
src: https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h/raw/main/audio-test/t1_0001-00010.wav
- label: VLSP ASR 2020 test T1
src: https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h/raw/main/audio-test/t1_utt000000042.wav
- label: VLSP ASR 2020 test T2
src: https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h/raw/main/audio-test/t2_0000006682.wav
---
# Wav2Vec2-Base-250h for the Vietnamese language
[Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/)
The base model pretrained and fine-tuned on 250 hours of VLSP ASR dataset on 16kHz sampled speech audio. When using the model
make sure that your speech input is also sampled at 16Khz.
# Usage
To transcribe audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import soundfile as sf
import torch
# load model and tokenizer
processor = Wav2Vec2Processor.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h")
model = Wav2Vec2ForCTC.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h")
# define function to read in sound file
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
# load dummy dataset and read soundfiles
ds = map_to_array({
"file": 'audio-test/t1_0001-00010.wav'
})
# tokenize
input_values = processor(ds["speech"], return_tensors="pt", padding="longest").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
```
*Result WER (with 4-grams LM)*:
| "VIVOS" | "VLSP-T1" | "VLSP-T2" |
|---|---|---|
| 6.1 | 9.1 | 40.8 |