nhankins's picture
nhankins/en_distilbert_lora_adapter_2.0
932b8ac verified
|
raw
history blame
3.04 kB
---
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
model-index:
- name: distilbert-base-multilingual-cased-lora-text-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-multilingual-cased-lora-text-classification
This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5714
- Precision: 0.7417
- Recall: 1.0
- F1 and accuracy: {'accuracy': 0.7416879795396419, 'f1': 0.8516886930983847}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 and accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:----------------------------------------------------------:|
| No log | 1.0 | 391 | 0.5780 | 0.7417 | 1.0 | {'accuracy': 0.7416879795396419, 'f1': 0.8516886930983847} |
| 0.647 | 2.0 | 782 | 0.5748 | 0.7417 | 1.0 | {'accuracy': 0.7416879795396419, 'f1': 0.8516886930983847} |
| 0.6216 | 3.0 | 1173 | 0.5713 | 0.7417 | 1.0 | {'accuracy': 0.7416879795396419, 'f1': 0.8516886930983847} |
| 0.6201 | 4.0 | 1564 | 0.5726 | 0.7417 | 1.0 | {'accuracy': 0.7416879795396419, 'f1': 0.8516886930983847} |
| 0.6201 | 5.0 | 1955 | 0.5765 | 0.7417 | 1.0 | {'accuracy': 0.7416879795396419, 'f1': 0.8516886930983847} |
| 0.6199 | 6.0 | 2346 | 0.5756 | 0.7417 | 1.0 | {'accuracy': 0.7416879795396419, 'f1': 0.8516886930983847} |
| 0.6365 | 7.0 | 2737 | 0.5827 | 0.7417 | 1.0 | {'accuracy': 0.7416879795396419, 'f1': 0.8516886930983847} |
| 0.6165 | 8.0 | 3128 | 0.5715 | 0.7417 | 1.0 | {'accuracy': 0.7416879795396419, 'f1': 0.8516886930983847} |
| 0.6185 | 9.0 | 3519 | 0.5715 | 0.7417 | 1.0 | {'accuracy': 0.7416879795396419, 'f1': 0.8516886930983847} |
| 0.6185 | 10.0 | 3910 | 0.5714 | 0.7417 | 1.0 | {'accuracy': 0.7416879795396419, 'f1': 0.8516886930983847} |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1