finbert-tone-finetuned-finance-topic-classification
This model is a fine-tuned version of yiyanghkust/finbert-tone on Twitter Financial News Topic dataset. It achieves the following results on the evaluation set:
- Loss: 0.509021
- Accuracy: 0.910615
- F1: 0.910647
- Precision: 0.911335
- Recall: 0.910615
Model description
Model determines the financial topic of given tweets over 20 various topics. Given the unbalanced distribution of the class labels, the weights were adjusted to pay attention to the less sampled labels which should increase overall performance..
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 266 | 0.5152 | 0.8552 | 0.8504 | 0.8508 | 0.8552 |
0.7618 | 2.0 | 532 | 0.3999 | 0.8790 | 0.8781 | 0.8842 | 0.8790 |
0.7618 | 3.0 | 798 | 0.3628 | 0.8943 | 0.8940 | 0.8958 | 0.8943 |
0.16 | 4.0 | 1064 | 0.3776 | 0.8997 | 0.9001 | 0.9025 | 0.8997 |
0.16 | 5.0 | 1330 | 0.4286 | 0.8999 | 0.9002 | 0.9022 | 0.8999 |
0.058 | 6.0 | 1596 | 0.4500 | 0.9043 | 0.9042 | 0.9055 | 0.9043 |
0.058 | 7.0 | 1862 | 0.4689 | 0.9021 | 0.9017 | 0.9026 | 0.9021 |
0.0267 | 8.0 | 2128 | 0.4918 | 0.9031 | 0.9029 | 0.9039 | 0.9031 |
0.0267 | 9.0 | 2394 | 0.5030 | 0.9048 | 0.9049 | 0.9060 | 0.9048 |
0.0177 | 10.0 | 2660 | 0.5052 | 0.9033 | 0.9034 | 0.9044 | 0.9033 |
0.0177 | 11.0 | 2926 | 0.5265 | 0.9036 | 0.9034 | 0.9055 | 0.9036 |
0.013 | 12.0 | 3192 | 0.5267 | 0.9041 | 0.9041 | 0.9058 | 0.9041 |
0.013 | 13.0 | 3458 | 0.5090 | 0.9106 | 0.9106 | 0.9113 | 0.9106 |
0.0105 | 14.0 | 3724 | 0.5315 | 0.9067 | 0.9067 | 0.9080 | 0.9067 |
0.0105 | 15.0 | 3990 | 0.5339 | 0.9084 | 0.9084 | 0.9093 | 0.9084 |
0.0068 | 16.0 | 4256 | 0.5414 | 0.9072 | 0.9074 | 0.9088 | 0.9072 |
0.0051 | 17.0 | 4522 | 0.5460 | 0.9092 | 0.9091 | 0.9102 | 0.9092 |
0.0051 | 18.0 | 4788 | 0.5438 | 0.9072 | 0.9073 | 0.9081 | 0.9072 |
0.0035 | 19.0 | 5054 | 0.5474 | 0.9072 | 0.9073 | 0.9080 | 0.9072 |
0.0035 | 20.0 | 5320 | 0.5484 | 0.9079 | 0.9080 | 0.9087 | 0.9079 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
- Downloads last month
- 168
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train nickmuchi/finbert-tone-finetuned-finance-topic-classification
Spaces using nickmuchi/finbert-tone-finetuned-finance-topic-classification 6
Evaluation results
- F1 on twitter-financial-news-topicself-reported0.911
- accuracy on twitter-financial-news-topicself-reported0.911