File size: 1,625 Bytes
ffdafeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: mit
tags:
- vision-transformer
- ViT
- classification
- cifar10
- computer-vision
- deep-learning
- machine-learning
---

# ViT-Classification-CIFAR10

## Model Description

This model is a Vision Transformer (ViT) architecture trained on the CIFAR-10 dataset for image classification. It is trained from scratch without pre-training on a larger dataset.

**Metrics:**

* Test accuracy: 82.04%
* Test loss: 0.5560

## Training Configuration

**Hardware:** NVIDIA RTX 3090

**Training parameters:**

* Epochs: 200
* Batch size: 2048
* Input size: 3x32x32
* Patch size: 4
* Sequence length: 8*8
* Embed size: 128
* Num of layers: 12
* Num of heads: 4
* Forward multiplier: 2
* Dropout: 0.1
* Optimizer: AdamW

## Intended Uses & Limitations

This model is intended for practice purposes and exploration of ViT architectures on the CIFAR-10 dataset. It can be used for image classification tasks on similar datasets.

**Limitations:**

* This model is trained on a relatively small dataset (CIFAR-10) and might not generalize well to unseen data.
* Training is done without fine-tuning, potentially limiting its performance compared to a fine-tuned model.
* Training is performed on a single RTX 3090.

## Training Data

The model is trained on the CIFAR-10 dataset, containing 60,000 32x32 color images in 10 classes. 

* Training set: 50,000 images
* Test set: 10,000 images

**Data Source:** [https://paperswithcode.com/dataset/cifar-10](https://paperswithcode.com/dataset/cifar-10)

## Documentation

* GitHub Repository: [ViT-Classification-CIFAR10](https://github.com/nick8592/ViT-Classification-CIFAR10.git)