Update README.md
Browse files
README.md
CHANGED
@@ -65,34 +65,54 @@ Without [sentence-transformers](https://www.SBERT.net), you can use the model li
|
|
65 |
from transformers import AutoTokenizer, AutoModel
|
66 |
import torch
|
67 |
|
68 |
-
|
69 |
#Mean Pooling - Take attention mask into account for correct averaging
|
70 |
def mean_pooling(model_output, attention_mask):
|
71 |
-
token_embeddings = model_output
|
72 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
73 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
74 |
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# Sentences we want sentence embeddings for
|
77 |
query = "Quante persone vivono a Londra?"
|
78 |
docs = ["A Londra vivono circa 9 milioni di persone", "Londra è conosciuta per il suo quartiere finanziario"]
|
79 |
|
80 |
# Load model from HuggingFace Hub
|
81 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
82 |
-
model = AutoModel.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
#
|
85 |
-
|
86 |
|
87 |
-
#
|
88 |
-
|
89 |
-
model_output = model(**encoded_input)
|
90 |
|
91 |
-
#
|
92 |
-
|
|
|
|
|
93 |
|
94 |
-
print("Sentence embeddings:")
|
95 |
-
print(sentence_embeddings)
|
96 |
```
|
97 |
|
98 |
|
|
|
65 |
from transformers import AutoTokenizer, AutoModel
|
66 |
import torch
|
67 |
|
|
|
68 |
#Mean Pooling - Take attention mask into account for correct averaging
|
69 |
def mean_pooling(model_output, attention_mask):
|
70 |
+
token_embeddings = model_output.last_hidden_state
|
71 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
72 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
73 |
|
74 |
|
75 |
+
#Encode text
|
76 |
+
def encode(texts):
|
77 |
+
# Tokenize sentences
|
78 |
+
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
|
79 |
+
|
80 |
+
# Compute token embeddings
|
81 |
+
with torch.no_grad():
|
82 |
+
model_output = model(**encoded_input, return_dict=True)
|
83 |
+
|
84 |
+
# Perform pooling
|
85 |
+
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
86 |
+
|
87 |
+
return embeddings
|
88 |
+
|
89 |
+
|
90 |
# Sentences we want sentence embeddings for
|
91 |
query = "Quante persone vivono a Londra?"
|
92 |
docs = ["A Londra vivono circa 9 milioni di persone", "Londra è conosciuta per il suo quartiere finanziario"]
|
93 |
|
94 |
# Load model from HuggingFace Hub
|
95 |
+
tokenizer = AutoTokenizer.from_pretrained("nickprock/mmarco-bert-base-italian-uncased")
|
96 |
+
model = AutoModel.from_pretrained("nickprock/mmarco-bert-base-italian-uncased")
|
97 |
+
|
98 |
+
#Encode query and docs
|
99 |
+
query_emb = encode(query)
|
100 |
+
doc_emb = encode(docs)
|
101 |
+
|
102 |
+
#Compute dot score between query and all document embeddings
|
103 |
+
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()
|
104 |
|
105 |
+
#Combine docs & scores
|
106 |
+
doc_score_pairs = list(zip(docs, scores))
|
107 |
|
108 |
+
#Sort by decreasing score
|
109 |
+
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
|
|
|
110 |
|
111 |
+
#Output passages & scores
|
112 |
+
print("Query:", query)
|
113 |
+
for doc, score in doc_score_pairs:
|
114 |
+
print(score, doc)
|
115 |
|
|
|
|
|
116 |
```
|
117 |
|
118 |
|