|
--- |
|
tags: |
|
- spacy |
|
- token-classification |
|
language: |
|
- en |
|
model-index: |
|
- name: en_xlnet_fine_tuned_ner |
|
results: |
|
- task: |
|
name: NER |
|
type: token-classification |
|
metrics: |
|
- name: NER Precision |
|
type: precision |
|
value: 0.8847416707 |
|
- name: NER Recall |
|
type: recall |
|
value: 0.9002161737 |
|
- name: NER F Score |
|
type: f_score |
|
value: 0.8924118449 |
|
--- |
|
|
|
This is a XLNet model for Named Entity Recognition, fine-tuned on OntoNotes v5 using Spacy in coNLL-2003 format and BIO tagged. |
|
For more details: https://github.com/nicoladisabato/ner-with-transformers |
|
|
|
| Feature | Description | |
|
| --- | --- | |
|
| **Name** | `en_xlnet_fine_tuned_ner` | |
|
| **Version** | `0.0.0` | |
|
| **spaCy** | `>=3.5.1,<3.6.0` | |
|
| **Default Pipeline** | `transformer`, `ner` | |
|
| **Components** | `transformer`, `ner` | |
|
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | |
|
| **Sources** | n/a | |
|
| **License** | n/a | |
|
| **Author** | [n/a]() | |
|
|
|
### Label Scheme |
|
|
|
<details> |
|
|
|
<summary>View label scheme (18 labels for 1 components)</summary> |
|
|
|
| Component | Labels | |
|
| --- | --- | |
|
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` | |
|
|
|
</details> |
|
|
|
### Accuracy |
|
|
|
| Type | Score | |
|
| --- | --- | |
|
| `ENTS_F` | 89.24 | |
|
| `ENTS_P` | 88.47 | |
|
| `ENTS_R` | 90.02 | |
|
| `TRANSFORMER_LOSS` | 124848.21 | |
|
| `NER_LOSS` | 196123.19 | |