nicoladisabato's picture
update readme
83c7339
---
tags:
- spacy
- token-classification
language:
- en
model-index:
- name: en_xlnet_fine_tuned_ner
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8847416707
- name: NER Recall
type: recall
value: 0.9002161737
- name: NER F Score
type: f_score
value: 0.8924118449
---
This is a XLNet model for Named Entity Recognition, fine-tuned on OntoNotes v5 using Spacy in coNLL-2003 format and BIO tagged.
For more details: https://github.com/nicoladisabato/ner-with-transformers
| Feature | Description |
| --- | --- |
| **Name** | `en_xlnet_fine_tuned_ner` |
| **Version** | `0.0.0` |
| **spaCy** | `>=3.5.1,<3.6.0` |
| **Default Pipeline** | `transformer`, `ner` |
| **Components** | `transformer`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |
### Label Scheme
<details>
<summary>View label scheme (18 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 89.24 |
| `ENTS_P` | 88.47 |
| `ENTS_R` | 90.02 |
| `TRANSFORMER_LOSS` | 124848.21 |
| `NER_LOSS` | 196123.19 |