|
--- |
|
license: apache-2.0 |
|
tags: |
|
- codet5 |
|
datasets: |
|
- code_x_glue_ct_code_to_text |
|
widget: |
|
- text: 'def pad(tensor, paddings, mode: "CONSTANT", name: nil) _op(:pad, tensor, paddings, mode: mode, name: name) end </s>' |
|
--- |
|
|
|
# Description |
|
|
|
CodeT5-small model, fine-tuned on the code summarization subtask of CodeXGLUE (Ruby programming language). This model can generate a docstring of a given function written in Ruby. |
|
|
|
# Notebook |
|
|
|
The notebook that I used to fine-tune CodeT5 can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/T5/Fine_tune_CodeT5_for_generating_docstrings_from_Ruby_code.ipynb). |
|
|
|
# Usage |
|
|
|
Here's how to use this model: |
|
|
|
```python |
|
from transformers import RobertaTokenizer, T5ForConditionalGeneration |
|
|
|
model_name = "nielsr/codet5-small-code-summarization-ruby" |
|
tokenizer = RobertaTokenizer.from_pretrained(model_name) |
|
model = T5ForConditionalGeneration.from_pretrained(model_name) |
|
|
|
code = """ |
|
def update_with_file_contents(digest, filename) |
|
File.open(filename) do |io| |
|
while (chunk = io.read(1024 * 8)) |
|
digest.update(chunk) |
|
end |
|
end |
|
end |
|
""" |
|
|
|
input_ids = tokenizer(code, return_tensors="pt").input_ids |
|
outputs = model.generate(input_ids) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
# Update the digest with the contents of the given file |
|
``` |