Whisper Large v2 Custom Hi - Nikhil Bhargava

This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_11_0 hi dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3389
  • Wer: 0.2186

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0523 2.44 500 0.2123 0.2664
0.0187 4.89 1000 0.2237 0.2370
0.0041 7.33 1500 0.2647 0.2310
0.0028 9.78 2000 0.2904 0.2344
0.0015 12.22 2500 0.2908 0.2268
0.0003 14.67 3000 0.3022 0.2197
0.0003 17.11 3500 0.3249 0.2195
0.0003 19.56 4000 0.3217 0.2161
0.0 22.0 4500 0.3335 0.2181
0.0 24.45 5000 0.3389 0.2186

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nikhilbh/whisper-large-v2-custom-hi

Finetuned
(200)
this model

Dataset used to train nikhilbh/whisper-large-v2-custom-hi

Evaluation results