tags: | |
- FrozenLake-v1-4x4 | |
- q-learning | |
- reinforcement-learning | |
- custom-implementation | |
model-index: | |
- name: FrozenLake-v2-4x4-Slippery | |
results: | |
- metrics: | |
- type: mean_reward | |
value: 0.73 +/- 0.45 | |
name: mean_reward | |
task: | |
type: reinforcement-learning | |
name: reinforcement-learning | |
dataset: | |
name: FrozenLake-v1-4x4 | |
type: FrozenLake-v1-4x4 | |
# **Q-Learning** Agent playing **FrozenLake-v2-4x4-Slippery** | |
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v2-4x4-Slippery** . | |
## Usage | |
```python | |
model = load_from_hub(repo_id="nikitakapitan/FrozenLake-v2-4x4-Slippery", filename="q-learning.pkl") | |
# Don't forget to check if you need to add additional attributes (is_slippery=False etc) | |
env = gym.make(model["env_id"]) | |
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) | |
``` | |