bert-base-uncased-finetuned-clinc_oos
This model is a fine-tuned version of bert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 1.0863
- Accuracy: {'accuracy': 0.8672727272727273}
- F1: {'f1': 0.8593551627139002}
Model Training Details
Parameter | Value |
---|---|
Task | text-classification |
Base Model Name | bert-base-uncased |
Dataset Name | clinc_oos |
Dataset Config | plus |
Batch Size | 16 |
Number of Epochs | 3 |
Learning Rate | 0.00002 |
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
4.3415 | 1.0 | 954 | 2.4724 | {'accuracy': 0.7769090909090909} | {'f1': 0.7596942777117995} |
1.7949 | 2.0 | 1908 | 1.3415 | {'accuracy': 0.8538181818181818} | {'f1': 0.8441232118060242} |
0.8898 | 3.0 | 2862 | 1.0863 | {'accuracy': 0.8672727272727273} | {'f1': 0.8593551627139002} |
Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 114
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for nikitakapitan/bert-base-uncased-finetuned-clinc_oos
Base model
google-bert/bert-base-uncasedDataset used to train nikitakapitan/bert-base-uncased-finetuned-clinc_oos
Evaluation results
- Accuracy on clinc_oostest set self-reported[object Object]
- F1 on clinc_oostest set self-reported[object Object]