Commit
·
11fb24d
1
Parent(s):
d18d44d
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -1
- a2c-PandaReachDense-v2/data +22 -20
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +4 -4
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.61 +/- 0.13
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37b937018781ab4608688153967a7e4cf7d23287694c61d710fbecc0c197f11b
|
3 |
+
size 109588
|
a2c-PandaReachDense-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.8.0a9
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -41,24 +43,24 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,29 +68,29 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f018608b3a0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f0186084870>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 4,
|
46 |
+
"num_timesteps": 2000000,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1679285856709166160,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL2FudHBjL2FuYWNvbmRhMy9lbnZzL3JsX3dvcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL2FudHBjL2FuYWNvbmRhMy9lbnZzL3JsX3dvcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWKTaPtWyKjx5iQ8/WKTaPtWyKjx5iQ8/WKTaPtWyKjx5iQ8/WKTaPtWyKjx5iQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiIlxvs8Oe79bxAW/puCnvRFdfz5ICBq/+QwyPyiGgb9hBto/8YKqP7XwRD8/g0I/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABYpNo+1bIqPHmJDz+gxbQ9cKWAO3AKgD1YpNo+1bIqPHmJDz+gxbQ9cKWAO3AKgD1YpNo+1bIqPHmJDz+gxbQ9cKWAO3AKgD1YpNo+1bIqPHmJDz+gxbQ9cKWAO3AKgD2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[0.4270351 0.01041861 0.5606914 ]\n [0.4270351 0.01041861 0.5606914 ]\n [0.4270351 0.01041861 0.5606914 ]\n [0.4270351 0.01041861 0.5606914 ]]",
|
62 |
+
"desired_goal": "[[-0.2358762 -0.9806947 -0.5225274 ]\n [-0.08197145 0.24937846 -0.60168886]\n [ 0.69551045 -1.0119066 1.7033197 ]\n [ 1.332121 0.7692979 0.75981516]]",
|
63 |
+
"observation": "[[0.4270351 0.01041861 0.5606914 0.08826756 0.00392597 0.06251991]\n [0.4270351 0.01041861 0.5606914 0.08826756 0.00392597 0.06251991]\n [0.4270351 0.01041861 0.5606914 0.08826756 0.00392597 0.06251991]\n [0.4270351 0.01041861 0.5606914 0.08826756 0.00392597 0.06251991]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAS8xPvRD21r1uZQ8+zX6pvTwu9Tyttb4940u9vSaaar2TS4g+SDDCPQVFGL46JOo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[-0.05073194 -0.10496151 0.14003536]\n [-0.08276138 0.02992927 0.09311996]\n [-0.0924299 -0.05727591 0.2662016 ]\n [ 0.09481865 -0.14870079 0.11432691]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
"_current_progress_remaining": 0.0,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInIaowp/h77+UhpRSlIwBbJRLMowBdJRHQKTcJEMLF4t1fZQoaAZoCWgPQwj8x0J0CBznv5SGlFKUaBVLMmgWR0Ck3Ab17IDHdX2UKGgGaAloD0MIj/rrFRZc77+UhpRSlGgVSzJoFkdApNvp7JGOMnV9lChoBmgJaA9DCFtCPujZrOG/lIaUUpRoFUsyaBZHQKTbzRJEpiJ1fZQoaAZoCWgPQwh/NJwyN9/Zv5SGlFKUaBVLMmgWR0Ck3LarFOwgdX2UKGgGaAloD0MIKGN8mL3s6L+UhpRSlGgVSzJoFkdApNyZSpBHC3V9lChoBmgJaA9DCFhyFYvflOy/lIaUUpRoFUsyaBZHQKTcfDzAeq91fZQoaAZoCWgPQwhCXDl7Z/Txv5SGlFKUaBVLMmgWR0Ck3F+NT987dX2UKGgGaAloD0MIqgzjbhCt9b+UhpRSlGgVSzJoFkdApN1OQ0XP7nV9lChoBmgJaA9DCKYKRiV1Auu/lIaUUpRoFUsyaBZHQKTdMPQOWjZ1fZQoaAZoCWgPQwgOZ341Bwj7v5SGlFKUaBVLMmgWR0Ck3RQ4S6DodX2UKGgGaAloD0MIBMk7hzJU2r+UhpRSlGgVSzJoFkdApNz3WH1vl3V9lChoBmgJaA9DCFRU/Urnw+i/lIaUUpRoFUsyaBZHQKTd0TAWSEF1fZQoaAZoCWgPQwgC2evdHy/xv5SGlFKUaBVLMmgWR0Ck3bPjOs1bdX2UKGgGaAloD0MIonprYKuE47+UhpRSlGgVSzJoFkdApN2WxY7q6nV9lChoBmgJaA9DCDMyyF2EqeO/lIaUUpRoFUsyaBZHQKTdedgfEGZ1fZQoaAZoCWgPQwhB9KRMamj0v5SGlFKUaBVLMmgWR0Ck3lFNtZV5dX2UKGgGaAloD0MIUWnEzD7P/r+UhpRSlGgVSzJoFkdApN4z6zmfXnV9lChoBmgJaA9DCLE1W3nJf++/lIaUUpRoFUsyaBZHQKTeFs6aLGd1fZQoaAZoCWgPQwgBMJ5BQ3/jv5SGlFKUaBVLMmgWR0Ck3fnsLORldX2UKGgGaAloD0MIwoh9AihG/L+UhpRSlGgVSzJoFkdApN7SlYU343V9lChoBmgJaA9DCNGxg0pcR/G/lIaUUpRoFUsyaBZHQKTetVG0/np1fZQoaAZoCWgPQwhf0a3X9KDxv5SGlFKUaBVLMmgWR0Ck3pgpjMFEdX2UKGgGaAloD0MIM6X1twRg6b+UhpRSlGgVSzJoFkdApN57LhaTwHV9lChoBmgJaA9DCJiIt86/Xdm/lIaUUpRoFUsyaBZHQKTfUn752yN1fZQoaAZoCWgPQwhRobq5+Nviv5SGlFKUaBVLMmgWR0Ck3zUaAFxGdX2UKGgGaAloD0MI8rImFvgK4r+UhpRSlGgVSzJoFkdApN8YC4jKPnV9lChoBmgJaA9DCInPnWD/9eG/lIaUUpRoFUsyaBZHQKTe+xubZvl1fZQoaAZoCWgPQwg9uDtrtx36v5SGlFKUaBVLMmgWR0Ck3+YywfQsdX2UKGgGaAloD0MIbqZCPBKv67+UhpRSlGgVSzJoFkdApN/IztTkyXV9lChoBmgJaA9DCILF4cyvpvO/lIaUUpRoFUsyaBZHQKTfq7o0Q9R1fZQoaAZoCWgPQwijc36K48Dev5SGlFKUaBVLMmgWR0Ck347XpW3jdX2UKGgGaAloD0MIbFopBHIJ4r+UhpRSlGgVSzJoFkdApOBk5lvqDHV9lChoBmgJaA9DCK/t7ZbkgNu/lIaUUpRoFUsyaBZHQKTgR6CUX551fZQoaAZoCWgPQwhYHTnSGRjxv5SGlFKUaBVLMmgWR0Ck4Cp8OTaCdX2UKGgGaAloD0MIfEeNCTGX1b+UhpRSlGgVSzJoFkdApOANinYQKHV9lChoBmgJaA9DCJqTF5mA3+W/lIaUUpRoFUsyaBZHQKTg6hzvJBB1fZQoaAZoCWgPQwiWmGclrXjmv5SGlFKUaBVLMmgWR0Ck4MzVc2R8dX2UKGgGaAloD0MI17/rM2d99L+UhpRSlGgVSzJoFkdApOCvpKSPl3V9lChoBmgJaA9DCNBf6BGj5+S/lIaUUpRoFUsyaBZHQKTgksunMt91fZQoaAZoCWgPQwiSzsDIy5rkv5SGlFKUaBVLMmgWR0Ck4XVSn+AFdX2UKGgGaAloD0MIaCPXTSkv7b+UhpRSlGgVSzJoFkdApOFYC0WuYHV9lChoBmgJaA9DCBO2n4zxYeO/lIaUUpRoFUsyaBZHQKThOt6ol2N1fZQoaAZoCWgPQwhZ3lUPmIfzv5SGlFKUaBVLMmgWR0Ck4R4EwFkhdX2UKGgGaAloD0MIyCO4kbJF37+UhpRSlGgVSzJoFkdApOH6Wu5jIHV9lChoBmgJaA9DCM09JHzvb9m/lIaUUpRoFUsyaBZHQKTh3Q40dil1fZQoaAZoCWgPQwiop4/AH37rv5SGlFKUaBVLMmgWR0Ck4b/9Hc1wdX2UKGgGaAloD0MIER5tHLGW8r+UhpRSlGgVSzJoFkdApOGjBbfP5nV9lChoBmgJaA9DCBtkkpGzsOa/lIaUUpRoFUsyaBZHQKTifEbYK6Z1fZQoaAZoCWgPQwjll8EYkajyv5SGlFKUaBVLMmgWR0Ck4l7kXDWLdX2UKGgGaAloD0MIFR3J5T8k5b+UhpRSlGgVSzJoFkdApOJBujynUHV9lChoBmgJaA9DCPrxlxb1Sd+/lIaUUpRoFUsyaBZHQKTiJNfPX051fZQoaAZoCWgPQwhXQQx07Qvfv5SGlFKUaBVLMmgWR0Ck4wSeiBXkdX2UKGgGaAloD0MIfNY1Wg5047+UhpRSlGgVSzJoFkdApOLnWz4UOHV9lChoBmgJaA9DCIFbd/NUB+W/lIaUUpRoFUsyaBZHQKTiyk/KQq91fZQoaAZoCWgPQwhOY3st6L3Qv5SGlFKUaBVLMmgWR0Ck4q1uivgWdX2UKGgGaAloD0MI78aCwqBM+L+UhpRSlGgVSzJoFkdApOODIHTqjnV9lChoBmgJaA9DCJUQrKqXX+W/lIaUUpRoFUsyaBZHQKTjZc+qzZ91fZQoaAZoCWgPQwgsnQ/PEuTsv5SGlFKUaBVLMmgWR0Ck40iqIacadX2UKGgGaAloD0MI1ZEjnYFR8b+UhpRSlGgVSzJoFkdApOMrvVmSQ3V9lChoBmgJaA9DCP8iaMwk6ue/lIaUUpRoFUsyaBZHQKTkB4X40uV1fZQoaAZoCWgPQwh9lBEXgAbxv5SGlFKUaBVLMmgWR0Ck4+oo3JgcdX2UKGgGaAloD0MI7idjfJi95L+UhpRSlGgVSzJoFkdApOPNGNJe3XV9lChoBmgJaA9DCGDLK9fbJvu/lIaUUpRoFUsyaBZHQKTjsBPsRg91fZQoaAZoCWgPQwiMZmX7kLfWv5SGlFKUaBVLMmgWR0Ck5I6nrIHUdX2UKGgGaAloD0MIiBHCo42j6L+UhpRSlGgVSzJoFkdApORxX2dupHV9lChoBmgJaA9DCH8yxofZy++/lIaUUpRoFUsyaBZHQKTkVEDQqqh1fZQoaAZoCWgPQwgZcJaS5aTov5SGlFKUaBVLMmgWR0Ck5DdcB2fTdX2UKGgGaAloD0MIcjEG1nH85b+UhpRSlGgVSzJoFkdApOUWp0fYBnV9lChoBmgJaA9DCIW0xqATAva/lIaUUpRoFUsyaBZHQKTk+VY6nzh1fZQoaAZoCWgPQwikUYGTbWDpv5SGlFKUaBVLMmgWR0Ck5NxMnJDFdX2UKGgGaAloD0MIAMeePZep5L+UhpRSlGgVSzJoFkdApOS/YL9deXV9lChoBmgJaA9DCHWxaaUQyOe/lIaUUpRoFUsyaBZHQKTlmtWdVed1fZQoaAZoCWgPQwjKUuv9Rjvhv5SGlFKUaBVLMmgWR0Ck5X2C/XXidX2UKGgGaAloD0MIINCZtKk68L+UhpRSlGgVSzJoFkdApOVgcBEKE3V9lChoBmgJaA9DCLaCpiVWRvS/lIaUUpRoFUsyaBZHQKTlQ38XN1R1fZQoaAZoCWgPQwjmCBnIs8vtv5SGlFKUaBVLMmgWR0Ck5i7OVxCIdX2UKGgGaAloD0MIg2vu6H958L+UhpRSlGgVSzJoFkdApOYRZbILgHV9lChoBmgJaA9DCN3sD5Tb9u2/lIaUUpRoFUsyaBZHQKTl9DneSB91fZQoaAZoCWgPQwhb0eY4twn0v5SGlFKUaBVLMmgWR0Ck5dez+m3wdX2UKGgGaAloD0MIT85Q3PGm8L+UhpRSlGgVSzJoFkdApObF+ocaO3V9lChoBmgJaA9DCJlmutdJ/ei/lIaUUpRoFUsyaBZHQKTmqJiy6c11fZQoaAZoCWgPQwipMoy7QTTiv5SGlFKUaBVLMmgWR0Ck5otrKvFFdX2UKGgGaAloD0MIJR+7C5SU8L+UhpRSlGgVSzJoFkdApOZu3QUpNXV9lChoBmgJaA9DCJ8fRgiPNvO/lIaUUpRoFUsyaBZHQKTnU7cwg1Z1fZQoaAZoCWgPQwjFjPD2IITmv5SGlFKUaBVLMmgWR0Ck5zZmZmZmdX2UKGgGaAloD0MIec2rOqtF87+UhpRSlGgVSzJoFkdApOcZPRArx3V9lChoBmgJaA9DCH45s12hD+y/lIaUUpRoFUsyaBZHQKTm/FZPl+51fZQoaAZoCWgPQwjzO01mvK3kv5SGlFKUaBVLMmgWR0Ck59aLfk3kdX2UKGgGaAloD0MIk3L3OT5a4r+UhpRSlGgVSzJoFkdApOe5MHryD3V9lChoBmgJaA9DCH0lkBK7Nue/lIaUUpRoFUsyaBZHQKTnnAgPmPp1fZQoaAZoCWgPQwjMCkW6n1Pkv5SGlFKUaBVLMmgWR0Ck538Nx2jgdX2UKGgGaAloD0MIjJ/GvfmN5r+UhpRSlGgVSzJoFkdApOhh08vEj3V9lChoBmgJaA9DCIO+9PbnIua/lIaUUpRoFUsyaBZHQKToRIxQBPt1fZQoaAZoCWgPQwj9+bZgqa7nv5SGlFKUaBVLMmgWR0Ck6Cd5yEL6dX2UKGgGaAloD0MIg1K0ci8w57+UhpRSlGgVSzJoFkdApOgKnHeaa3V9lChoBmgJaA9DCPeuQV96e+O/lIaUUpRoFUsyaBZHQKTo6U5dWyV1fZQoaAZoCWgPQwiU3je+9szZv5SGlFKUaBVLMmgWR0Ck6MwA2hqTdX2UKGgGaAloD0MIpdk8DoP54L+UhpRSlGgVSzJoFkdApOiu74BV/HV9lChoBmgJaA9DCM/4vrhUpeC/lIaUUpRoFUsyaBZHQKTokffXPJJ1ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 62500,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf1438f90e97a271ffaba72513b06728f5fa3f29f4776a81d9c7b33d3c8f7780
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44b8471b356e4695c6a6e58d4d6c85fcf490adaced5231d22c0aa867d49cabf7
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.
|
2 |
-
- Python: 3.
|
3 |
-
- Stable-Baselines3: 1.
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.15.0-67-generic-x86_64-with-glibc2.17 # 74~20.04.1-Ubuntu SMP Wed Feb 22 14:52:34 UTC 2023
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.8.0a9
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.2
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f000b4d9e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f000b4da940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679218697562161384, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdlDfPnAP0rsJIRM/dlDfPnAP0rsJIRM/dlDfPnAP0rsJIRM/dlDfPnAP0rsJIRM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAglQQPz0hmz7F7N2+zZeqP5D3Ej/8cM+9j/zFP/5sqT5DH/A+vRezv9QofD9lQKC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB2UN8+cA/SuwkhEz/ttg08iQJ/u7TfBzx2UN8+cA/SuwkhEz/ttg08iQJ/u7TfBzx2UN8+cA/SuwkhEz/ttg08iQJ/u7TfBzx2UN8+cA/SuwkhEz/ttg08iQJ/u7TfBzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43616074 -0.00641053 0.5747228 ]\n [ 0.43616074 -0.00641053 0.5747228 ]\n [ 0.43616074 -0.00641053 0.5747228 ]\n [ 0.43616074 -0.00641053 0.5747228 ]]", "desired_goal": "[[ 0.5637895 0.30298796 -0.43344703]\n [ 1.3327576 0.57409 -0.10128972]\n [ 1.54677 0.33090967 0.4689885 ]\n [-1.3991619 0.984998 -1.2519652 ]]", "observation": "[[ 0.43616074 -0.00641053 0.5747228 0.00864957 -0.00389114 0.00829308]\n [ 0.43616074 -0.00641053 0.5747228 0.00864957 -0.00389114 0.00829308]\n [ 0.43616074 -0.00641053 0.5747228 0.00864957 -0.00389114 0.00829308]\n [ 0.43616074 -0.00641053 0.5747228 0.00864957 -0.00389114 0.00829308]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyXOiPS0gTj2FJWc+maoWPsQJcj09PBo9lCTju1Qh9b3TKhY+QSA7PUTI0z3AsEQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07932241 0.05032365 0.22572906]\n [ 0.14713515 0.05909134 0.0376551 ]\n [-0.00693185 -0.11969247 0.14664774]\n [ 0.04568506 0.10340932 0.1920805 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIX2HB/YAHCMCUhpRSlIwBbJRLMowBdJRHQKcTx5ckdFR1fZQoaAZoCWgPQwjItaFinF8EwJSGlFKUaBVLMmgWR0CnE4tXxOLzdX2UKGgGaAloD0MIRu9UwD3PA8CUhpRSlGgVSzJoFkdApxNPNA1NxnV9lChoBmgJaA9DCFRW0/VEBxLAlIaUUpRoFUsyaBZHQKcTFEbYK6Z1fZQoaAZoCWgPQwiHbvYHym0AwJSGlFKUaBVLMmgWR0CnFNvf8/D+dX2UKGgGaAloD0MIGmoUksyKAcCUhpRSlGgVSzJoFkdApxSflEJBxHV9lChoBmgJaA9DCOyH2GDhJBLAlIaUUpRoFUsyaBZHQKcUY5EMLF51fZQoaAZoCWgPQwhszOuIQxYGwJSGlFKUaBVLMmgWR0CnFCik43m3dX2UKGgGaAloD0MISzrKwWziBMCUhpRSlGgVSzJoFkdApxXrWCmMwXV9lChoBmgJaA9DCKWHodXJ6RLAlIaUUpRoFUsyaBZHQKcVrvPTodN1fZQoaAZoCWgPQwhP5bSn5JwAwJSGlFKUaBVLMmgWR0CnFXKQRwqBdX2UKGgGaAloD0MIBygNNQqJAMCUhpRSlGgVSzJoFkdApxU3hZQpF3V9lChoBmgJaA9DCLhX5q26TgXAlIaUUpRoFUsyaBZHQKcW+PBi1At1fZQoaAZoCWgPQwhRFr6+1pUSwJSGlFKUaBVLMmgWR0CnFryzHCGfdX2UKGgGaAloD0MIa378pUWdDMCUhpRSlGgVSzJoFkdApxaAj8k2P3V9lChoBmgJaA9DCEsC1NSyFRbAlIaUUpRoFUsyaBZHQKcWRXGwRoR1fZQoaAZoCWgPQwi7Qh8sY1MQwJSGlFKUaBVLMmgWR0CnGAp48loldX2UKGgGaAloD0MILAyR09fTAcCUhpRSlGgVSzJoFkdApxfOLYPGyXV9lChoBmgJaA9DCIC4q1eRYRPAlIaUUpRoFUsyaBZHQKcXkfvnbIt1fZQoaAZoCWgPQwg/q8yU1v8TwJSGlFKUaBVLMmgWR0CnF1bdznzQdX2UKGgGaAloD0MI5Q0w8x1cB8CUhpRSlGgVSzJoFkdApxki3w1BMXV9lChoBmgJaA9DCIlFDDuMyQjAlIaUUpRoFUsyaBZHQKcY5o7FKkF1fZQoaAZoCWgPQwgtQUZAhWMDwJSGlFKUaBVLMmgWR0CnGKpL/S6UdX2UKGgGaAloD0MIMbQ6OUORBsCUhpRSlGgVSzJoFkdApxhvM4cWCXV9lChoBmgJaA9DCNEGYAMiFBLAlIaUUpRoFUsyaBZHQKcaK9lmOEN1fZQoaAZoCWgPQwi71Aj9TH38v5SGlFKUaBVLMmgWR0CnGe+NkvsadX2UKGgGaAloD0MIx0j2CDXDCMCUhpRSlGgVSzJoFkdApxmy6vq1PXV9lChoBmgJaA9DCKUUdHtJgwTAlIaUUpRoFUsyaBZHQKcZd8IAwPB1fZQoaAZoCWgPQwhOJQNAFbcGwJSGlFKUaBVLMmgWR0CnGz6nzg/DdX2UKGgGaAloD0MIAtcVM8I7CMCUhpRSlGgVSzJoFkdApxsCvHLidnV9lChoBmgJaA9DCAWiJ2VSw/q/lIaUUpRoFUsyaBZHQKcaxp6hQFd1fZQoaAZoCWgPQwi3Konsg/wRwJSGlFKUaBVLMmgWR0CnGouhsZYQdX2UKGgGaAloD0MIV1uxv+yeDcCUhpRSlGgVSzJoFkdApxxGOU+s5nV9lChoBmgJaA9DCKkz95DwPf6/lIaUUpRoFUsyaBZHQKccCfSx7iR1fZQoaAZoCWgPQwhJL2r3q0AMwJSGlFKUaBVLMmgWR0CnG82gOBlMdX2UKGgGaAloD0MIavmBqzzhD8CUhpRSlGgVSzJoFkdApxuSQo1DSnV9lChoBmgJaA9DCOrnTUUq7ATAlIaUUpRoFUsyaBZHQKcdXBfrrxB1fZQoaAZoCWgPQwisONVamGUBwJSGlFKUaBVLMmgWR0CnHR/dAPd3dX2UKGgGaAloD0MIgXueP20UBsCUhpRSlGgVSzJoFkdApxzjfek563V9lChoBmgJaA9DCL5KPnYXGBHAlIaUUpRoFUsyaBZHQKccqHDaXa91fZQoaAZoCWgPQwgbDksDPyoAwJSGlFKUaBVLMmgWR0CnHlY/Vy3kdX2UKGgGaAloD0MIa2PshJdQHMCUhpRSlGgVSzJoFkdApx4Zu63AmHV9lChoBmgJaA9DCKg2OBH9mgXAlIaUUpRoFUsyaBZHQKcd3YL9deJ1fZQoaAZoCWgPQwihndMs0G7+v5SGlFKUaBVLMmgWR0CnHaIsiB5HdX2UKGgGaAloD0MI+yE2WDiJ/r+UhpRSlGgVSzJoFkdApx9UgIQe3nV9lChoBmgJaA9DCDdQ4J18WhrAlIaUUpRoFUsyaBZHQKcfF/wRXfZ1fZQoaAZoCWgPQwibBG9IoyIHwJSGlFKUaBVLMmgWR0CnHtvHLidbdX2UKGgGaAloD0MIhNcubTiMDMCUhpRSlGgVSzJoFkdApx6gmE4//3V9lChoBmgJaA9DCHl4z4HliAPAlIaUUpRoFUsyaBZHQKcgQbobGWF1fZQoaAZoCWgPQwhDBBxClWoSwJSGlFKUaBVLMmgWR0CnIAVJDmbLdX2UKGgGaAloD0MIhiFy+nqOGcCUhpRSlGgVSzJoFkdApx/I+W4Vh3V9lChoBmgJaA9DCKkT0ETYUB/AlIaUUpRoFUsyaBZHQKcfjd3Sro51fZQoaAZoCWgPQwjdQlciUH0HwJSGlFKUaBVLMmgWR0CnIUiZv1lHdX2UKGgGaAloD0MI8SvWcJFrGMCUhpRSlGgVSzJoFkdApyEL+1jRUnV9lChoBmgJaA9DCBu7RPXWMBnAlIaUUpRoFUsyaBZHQKcgz2alUId1fZQoaAZoCWgPQwiHNZVFYVcBwJSGlFKUaBVLMmgWR0CnIJRNIsiCdX2UKGgGaAloD0MIQPm7d9SoEsCUhpRSlGgVSzJoFkdApyJF25hBq3V9lChoBmgJaA9DCM9m1edqKw/AlIaUUpRoFUsyaBZHQKciCZlWfbt1fZQoaAZoCWgPQwh8CoDxDPoEwJSGlFKUaBVLMmgWR0CnIc0u14PgdX2UKGgGaAloD0MIJuSDns0q/b+UhpRSlGgVSzJoFkdApyGSP2f03HV9lChoBmgJaA9DCN5Wem02dgHAlIaUUpRoFUsyaBZHQKcjXyvs7dV1fZQoaAZoCWgPQwinyYy3lZ4MwJSGlFKUaBVLMmgWR0CnIyODaoMsdX2UKGgGaAloD0MI+N7foL36E8CUhpRSlGgVSzJoFkdApyLnryDqW3V9lChoBmgJaA9DCM2TawpkNhXAlIaUUpRoFUsyaBZHQKcirXnQpnZ1fZQoaAZoCWgPQwh0et6NBUUHwJSGlFKUaBVLMmgWR0CnJO+nQ6ZIdX2UKGgGaAloD0MIgO7Lme2KFsCUhpRSlGgVSzJoFkdApySz1dxAB3V9lChoBmgJaA9DCDhqhel7DQfAlIaUUpRoFUsyaBZHQKckeCJ40Mx1fZQoaAZoCWgPQwh9IeS8/w8IwJSGlFKUaBVLMmgWR0CnJD3VLBbfdX2UKGgGaAloD0MIWB6kp8hh+L+UhpRSlGgVSzJoFkdApyaw91U2k3V9lChoBmgJaA9DCIKPwYpTrQjAlIaUUpRoFUsyaBZHQKcmdVktmL91fZQoaAZoCWgPQwgSwqONI5YDwJSGlFKUaBVLMmgWR0CnJjn1OCXhdX2UKGgGaAloD0MIkSxgArfuD8CUhpRSlGgVSzJoFkdApyX/2/SH/XV9lChoBmgJaA9DCCXpmsk3KxfAlIaUUpRoFUsyaBZHQKcoJr56+nJ1fZQoaAZoCWgPQwhmhLcHIWD+v5SGlFKUaBVLMmgWR0CnJ+rGipNsdX2UKGgGaAloD0MIWmd8X1zqG8CUhpRSlGgVSzJoFkdApyeu4y44InV9lChoBmgJaA9DCAk02NR59ALAlIaUUpRoFUsyaBZHQKcndCw8nu11fZQoaAZoCWgPQwi8BRIUPwYPwJSGlFKUaBVLMmgWR0CnKb1ndweedX2UKGgGaAloD0MIucK7XMT3CsCUhpRSlGgVSzJoFkdApymBtix3V3V9lChoBmgJaA9DCMKlY84zviDAlIaUUpRoFUsyaBZHQKcpRanrIHV1fZQoaAZoCWgPQwgQH9jxX8AJwJSGlFKUaBVLMmgWR0CnKQtg0CRwdX2UKGgGaAloD0MIbEJaY9DpAMCUhpRSlGgVSzJoFkdApytP5nDiwXV9lChoBmgJaA9DCKio+pXOpw/AlIaUUpRoFUsyaBZHQKcrFFVDKHR1fZQoaAZoCWgPQwjizK/mAHEgwJSGlFKUaBVLMmgWR0CnKtisGPgfdX2UKGgGaAloD0MIN9+I7lk3EMCUhpRSlGgVSzJoFkdApyqeH1vl2nV9lChoBmgJaA9DCEFmZ9E7xSHAlIaUUpRoFUsyaBZHQKcszjtoi9t1fZQoaAZoCWgPQwiJRQw7jOkdwJSGlFKUaBVLMmgWR0CnLJJKJ2t/dX2UKGgGaAloD0MIDkxuFFmLBsCUhpRSlGgVSzJoFkdApyxW5tm+TXV9lChoBmgJaA9DCLFR1m8mlhfAlIaUUpRoFUsyaBZHQKcsHHAh0Qt1fZQoaAZoCWgPQwjpSZnU0HYZwJSGlFKUaBVLMmgWR0CnLfcjzI3jdX2UKGgGaAloD0MIDaoNTkRfGsCUhpRSlGgVSzJoFkdApy26gsbvPXV9lChoBmgJaA9DCB2Txf1HhgbAlIaUUpRoFUsyaBZHQKctfkWhysF1fZQoaAZoCWgPQwiP/wJBgEwEwJSGlFKUaBVLMmgWR0CnLUMzVMEidX2UKGgGaAloD0MIPl3dsdjmBcCUhpRSlGgVSzJoFkdApy77x7RfGHV9lChoBmgJaA9DCKIL6lvmlAHAlIaUUpRoFUsyaBZHQKcuv47A+IN1fZQoaAZoCWgPQwhEM0+uKXANwJSGlFKUaBVLMmgWR0CnLoNTDO1OdX2UKGgGaAloD0MICRnIs8tHFMCUhpRSlGgVSzJoFkdApy5IAsCkoHV9lChoBmgJaA9DCHEceLXcWRLAlIaUUpRoFUsyaBZHQKcwH4gzP8h1fZQoaAZoCWgPQwiOWfYksJkDwJSGlFKUaBVLMmgWR0CnL+MrmQr+dX2UKGgGaAloD0MI4PWZsz7lDcCUhpRSlGgVSzJoFkdApy+m3Sa3JHV9lChoBmgJaA9DCESIK2fvjALAlIaUUpRoFUsyaBZHQKcva7FsHjZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f018608b3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0186084870>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679285856709166160, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL2FudHBjL2FuYWNvbmRhMy9lbnZzL3JsX3dvcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL2FudHBjL2FuYWNvbmRhMy9lbnZzL3JsX3dvcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWKTaPtWyKjx5iQ8/WKTaPtWyKjx5iQ8/WKTaPtWyKjx5iQ8/WKTaPtWyKjx5iQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiIlxvs8Oe79bxAW/puCnvRFdfz5ICBq/+QwyPyiGgb9hBto/8YKqP7XwRD8/g0I/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABYpNo+1bIqPHmJDz+gxbQ9cKWAO3AKgD1YpNo+1bIqPHmJDz+gxbQ9cKWAO3AKgD1YpNo+1bIqPHmJDz+gxbQ9cKWAO3AKgD1YpNo+1bIqPHmJDz+gxbQ9cKWAO3AKgD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4270351 0.01041861 0.5606914 ]\n [0.4270351 0.01041861 0.5606914 ]\n [0.4270351 0.01041861 0.5606914 ]\n [0.4270351 0.01041861 0.5606914 ]]", "desired_goal": "[[-0.2358762 -0.9806947 -0.5225274 ]\n [-0.08197145 0.24937846 -0.60168886]\n [ 0.69551045 -1.0119066 1.7033197 ]\n [ 1.332121 0.7692979 0.75981516]]", "observation": "[[0.4270351 0.01041861 0.5606914 0.08826756 0.00392597 0.06251991]\n [0.4270351 0.01041861 0.5606914 0.08826756 0.00392597 0.06251991]\n [0.4270351 0.01041861 0.5606914 0.08826756 0.00392597 0.06251991]\n [0.4270351 0.01041861 0.5606914 0.08826756 0.00392597 0.06251991]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAS8xPvRD21r1uZQ8+zX6pvTwu9Tyttb4940u9vSaaar2TS4g+SDDCPQVFGL46JOo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05073194 -0.10496151 0.14003536]\n [-0.08276138 0.02992927 0.09311996]\n [-0.0924299 -0.05727591 0.2662016 ]\n [ 0.09481865 -0.14870079 0.11432691]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInIaowp/h77+UhpRSlIwBbJRLMowBdJRHQKTcJEMLF4t1fZQoaAZoCWgPQwj8x0J0CBznv5SGlFKUaBVLMmgWR0Ck3Ab17IDHdX2UKGgGaAloD0MIj/rrFRZc77+UhpRSlGgVSzJoFkdApNvp7JGOMnV9lChoBmgJaA9DCFtCPujZrOG/lIaUUpRoFUsyaBZHQKTbzRJEpiJ1fZQoaAZoCWgPQwh/NJwyN9/Zv5SGlFKUaBVLMmgWR0Ck3LarFOwgdX2UKGgGaAloD0MIKGN8mL3s6L+UhpRSlGgVSzJoFkdApNyZSpBHC3V9lChoBmgJaA9DCFhyFYvflOy/lIaUUpRoFUsyaBZHQKTcfDzAeq91fZQoaAZoCWgPQwhCXDl7Z/Txv5SGlFKUaBVLMmgWR0Ck3F+NT987dX2UKGgGaAloD0MIqgzjbhCt9b+UhpRSlGgVSzJoFkdApN1OQ0XP7nV9lChoBmgJaA9DCKYKRiV1Auu/lIaUUpRoFUsyaBZHQKTdMPQOWjZ1fZQoaAZoCWgPQwgOZ341Bwj7v5SGlFKUaBVLMmgWR0Ck3RQ4S6DodX2UKGgGaAloD0MIBMk7hzJU2r+UhpRSlGgVSzJoFkdApNz3WH1vl3V9lChoBmgJaA9DCFRU/Urnw+i/lIaUUpRoFUsyaBZHQKTd0TAWSEF1fZQoaAZoCWgPQwgC2evdHy/xv5SGlFKUaBVLMmgWR0Ck3bPjOs1bdX2UKGgGaAloD0MIonprYKuE47+UhpRSlGgVSzJoFkdApN2WxY7q6nV9lChoBmgJaA9DCDMyyF2EqeO/lIaUUpRoFUsyaBZHQKTdedgfEGZ1fZQoaAZoCWgPQwhB9KRMamj0v5SGlFKUaBVLMmgWR0Ck3lFNtZV5dX2UKGgGaAloD0MIUWnEzD7P/r+UhpRSlGgVSzJoFkdApN4z6zmfXnV9lChoBmgJaA9DCLE1W3nJf++/lIaUUpRoFUsyaBZHQKTeFs6aLGd1fZQoaAZoCWgPQwgBMJ5BQ3/jv5SGlFKUaBVLMmgWR0Ck3fnsLORldX2UKGgGaAloD0MIwoh9AihG/L+UhpRSlGgVSzJoFkdApN7SlYU343V9lChoBmgJaA9DCNGxg0pcR/G/lIaUUpRoFUsyaBZHQKTetVG0/np1fZQoaAZoCWgPQwhf0a3X9KDxv5SGlFKUaBVLMmgWR0Ck3pgpjMFEdX2UKGgGaAloD0MIM6X1twRg6b+UhpRSlGgVSzJoFkdApN57LhaTwHV9lChoBmgJaA9DCJiIt86/Xdm/lIaUUpRoFUsyaBZHQKTfUn752yN1fZQoaAZoCWgPQwhRobq5+Nviv5SGlFKUaBVLMmgWR0Ck3zUaAFxGdX2UKGgGaAloD0MI8rImFvgK4r+UhpRSlGgVSzJoFkdApN8YC4jKPnV9lChoBmgJaA9DCInPnWD/9eG/lIaUUpRoFUsyaBZHQKTe+xubZvl1fZQoaAZoCWgPQwg9uDtrtx36v5SGlFKUaBVLMmgWR0Ck3+YywfQsdX2UKGgGaAloD0MIbqZCPBKv67+UhpRSlGgVSzJoFkdApN/IztTkyXV9lChoBmgJaA9DCILF4cyvpvO/lIaUUpRoFUsyaBZHQKTfq7o0Q9R1fZQoaAZoCWgPQwijc36K48Dev5SGlFKUaBVLMmgWR0Ck347XpW3jdX2UKGgGaAloD0MIbFopBHIJ4r+UhpRSlGgVSzJoFkdApOBk5lvqDHV9lChoBmgJaA9DCK/t7ZbkgNu/lIaUUpRoFUsyaBZHQKTgR6CUX551fZQoaAZoCWgPQwhYHTnSGRjxv5SGlFKUaBVLMmgWR0Ck4Cp8OTaCdX2UKGgGaAloD0MIfEeNCTGX1b+UhpRSlGgVSzJoFkdApOANinYQKHV9lChoBmgJaA9DCJqTF5mA3+W/lIaUUpRoFUsyaBZHQKTg6hzvJBB1fZQoaAZoCWgPQwiWmGclrXjmv5SGlFKUaBVLMmgWR0Ck4MzVc2R8dX2UKGgGaAloD0MI17/rM2d99L+UhpRSlGgVSzJoFkdApOCvpKSPl3V9lChoBmgJaA9DCNBf6BGj5+S/lIaUUpRoFUsyaBZHQKTgksunMt91fZQoaAZoCWgPQwiSzsDIy5rkv5SGlFKUaBVLMmgWR0Ck4XVSn+AFdX2UKGgGaAloD0MIaCPXTSkv7b+UhpRSlGgVSzJoFkdApOFYC0WuYHV9lChoBmgJaA9DCBO2n4zxYeO/lIaUUpRoFUsyaBZHQKThOt6ol2N1fZQoaAZoCWgPQwhZ3lUPmIfzv5SGlFKUaBVLMmgWR0Ck4R4EwFkhdX2UKGgGaAloD0MIyCO4kbJF37+UhpRSlGgVSzJoFkdApOH6Wu5jIHV9lChoBmgJaA9DCM09JHzvb9m/lIaUUpRoFUsyaBZHQKTh3Q40dil1fZQoaAZoCWgPQwiop4/AH37rv5SGlFKUaBVLMmgWR0Ck4b/9Hc1wdX2UKGgGaAloD0MIER5tHLGW8r+UhpRSlGgVSzJoFkdApOGjBbfP5nV9lChoBmgJaA9DCBtkkpGzsOa/lIaUUpRoFUsyaBZHQKTifEbYK6Z1fZQoaAZoCWgPQwjll8EYkajyv5SGlFKUaBVLMmgWR0Ck4l7kXDWLdX2UKGgGaAloD0MIFR3J5T8k5b+UhpRSlGgVSzJoFkdApOJBujynUHV9lChoBmgJaA9DCPrxlxb1Sd+/lIaUUpRoFUsyaBZHQKTiJNfPX051fZQoaAZoCWgPQwhXQQx07Qvfv5SGlFKUaBVLMmgWR0Ck4wSeiBXkdX2UKGgGaAloD0MIfNY1Wg5047+UhpRSlGgVSzJoFkdApOLnWz4UOHV9lChoBmgJaA9DCIFbd/NUB+W/lIaUUpRoFUsyaBZHQKTiyk/KQq91fZQoaAZoCWgPQwhOY3st6L3Qv5SGlFKUaBVLMmgWR0Ck4q1uivgWdX2UKGgGaAloD0MI78aCwqBM+L+UhpRSlGgVSzJoFkdApOODIHTqjnV9lChoBmgJaA9DCJUQrKqXX+W/lIaUUpRoFUsyaBZHQKTjZc+qzZ91fZQoaAZoCWgPQwgsnQ/PEuTsv5SGlFKUaBVLMmgWR0Ck40iqIacadX2UKGgGaAloD0MI1ZEjnYFR8b+UhpRSlGgVSzJoFkdApOMrvVmSQ3V9lChoBmgJaA9DCP8iaMwk6ue/lIaUUpRoFUsyaBZHQKTkB4X40uV1fZQoaAZoCWgPQwh9lBEXgAbxv5SGlFKUaBVLMmgWR0Ck4+oo3JgcdX2UKGgGaAloD0MI7idjfJi95L+UhpRSlGgVSzJoFkdApOPNGNJe3XV9lChoBmgJaA9DCGDLK9fbJvu/lIaUUpRoFUsyaBZHQKTjsBPsRg91fZQoaAZoCWgPQwiMZmX7kLfWv5SGlFKUaBVLMmgWR0Ck5I6nrIHUdX2UKGgGaAloD0MIiBHCo42j6L+UhpRSlGgVSzJoFkdApORxX2dupHV9lChoBmgJaA9DCH8yxofZy++/lIaUUpRoFUsyaBZHQKTkVEDQqqh1fZQoaAZoCWgPQwgZcJaS5aTov5SGlFKUaBVLMmgWR0Ck5DdcB2fTdX2UKGgGaAloD0MIcjEG1nH85b+UhpRSlGgVSzJoFkdApOUWp0fYBnV9lChoBmgJaA9DCIW0xqATAva/lIaUUpRoFUsyaBZHQKTk+VY6nzh1fZQoaAZoCWgPQwikUYGTbWDpv5SGlFKUaBVLMmgWR0Ck5NxMnJDFdX2UKGgGaAloD0MIAMeePZep5L+UhpRSlGgVSzJoFkdApOS/YL9deXV9lChoBmgJaA9DCHWxaaUQyOe/lIaUUpRoFUsyaBZHQKTlmtWdVed1fZQoaAZoCWgPQwjKUuv9Rjvhv5SGlFKUaBVLMmgWR0Ck5X2C/XXidX2UKGgGaAloD0MIINCZtKk68L+UhpRSlGgVSzJoFkdApOVgcBEKE3V9lChoBmgJaA9DCLaCpiVWRvS/lIaUUpRoFUsyaBZHQKTlQ38XN1R1fZQoaAZoCWgPQwjmCBnIs8vtv5SGlFKUaBVLMmgWR0Ck5i7OVxCIdX2UKGgGaAloD0MIg2vu6H958L+UhpRSlGgVSzJoFkdApOYRZbILgHV9lChoBmgJaA9DCN3sD5Tb9u2/lIaUUpRoFUsyaBZHQKTl9DneSB91fZQoaAZoCWgPQwhb0eY4twn0v5SGlFKUaBVLMmgWR0Ck5dez+m3wdX2UKGgGaAloD0MIT85Q3PGm8L+UhpRSlGgVSzJoFkdApObF+ocaO3V9lChoBmgJaA9DCJlmutdJ/ei/lIaUUpRoFUsyaBZHQKTmqJiy6c11fZQoaAZoCWgPQwipMoy7QTTiv5SGlFKUaBVLMmgWR0Ck5otrKvFFdX2UKGgGaAloD0MIJR+7C5SU8L+UhpRSlGgVSzJoFkdApOZu3QUpNXV9lChoBmgJaA9DCJ8fRgiPNvO/lIaUUpRoFUsyaBZHQKTnU7cwg1Z1fZQoaAZoCWgPQwjFjPD2IITmv5SGlFKUaBVLMmgWR0Ck5zZmZmZmdX2UKGgGaAloD0MIec2rOqtF87+UhpRSlGgVSzJoFkdApOcZPRArx3V9lChoBmgJaA9DCH45s12hD+y/lIaUUpRoFUsyaBZHQKTm/FZPl+51fZQoaAZoCWgPQwjzO01mvK3kv5SGlFKUaBVLMmgWR0Ck59aLfk3kdX2UKGgGaAloD0MIk3L3OT5a4r+UhpRSlGgVSzJoFkdApOe5MHryD3V9lChoBmgJaA9DCH0lkBK7Nue/lIaUUpRoFUsyaBZHQKTnnAgPmPp1fZQoaAZoCWgPQwjMCkW6n1Pkv5SGlFKUaBVLMmgWR0Ck538Nx2jgdX2UKGgGaAloD0MIjJ/GvfmN5r+UhpRSlGgVSzJoFkdApOhh08vEj3V9lChoBmgJaA9DCIO+9PbnIua/lIaUUpRoFUsyaBZHQKToRIxQBPt1fZQoaAZoCWgPQwj9+bZgqa7nv5SGlFKUaBVLMmgWR0Ck6Cd5yEL6dX2UKGgGaAloD0MIg1K0ci8w57+UhpRSlGgVSzJoFkdApOgKnHeaa3V9lChoBmgJaA9DCPeuQV96e+O/lIaUUpRoFUsyaBZHQKTo6U5dWyV1fZQoaAZoCWgPQwiU3je+9szZv5SGlFKUaBVLMmgWR0Ck6MwA2hqTdX2UKGgGaAloD0MIpdk8DoP54L+UhpRSlGgVSzJoFkdApOiu74BV/HV9lChoBmgJaA9DCM/4vrhUpeC/lIaUUpRoFUsyaBZHQKTokffXPJJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-67-generic-x86_64-with-glibc2.17 # 74~20.04.1-Ubuntu SMP Wed Feb 22 14:52:34 UTC 2023", "Python": "3.8.16", "Stable-Baselines3": "1.8.0a9", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.6126957249594852, "std_reward": 0.1344213174007075, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-20T11:32:20.299850"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d56efed9605a76941e2e61b67d0fcee6ff09296b903fedc80d288907bfa868b
|
3 |
+
size 2464
|