File size: 14,380 Bytes
0655b48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import torch
from torch.utils.data import random_split, Dataset, DataLoader, Subset, ConcatDataset
import pandas as pd
import random
import ast
import dask.dataframe as dd
import os
from sklearn.model_selection import train_test_split
from pytorch_lightning import LightningDataModule
from tqdm import tqdm
import gc
import psutil
import time
import copy
import esm
from esm import pretrained
from transformers import AutoTokenizer, AutoModel
########################################
# Dataset iterator with masking tokens #
########################################
class TextSeqPairing_Dataset(Dataset):
def __init__(self, args: any, df: pd.Series):
# dataframe
self.df = df
self.length = self.df.shape[0]
self.df_column_names = self.df.columns.tolist()
self.protein_sequence_list = self.df[args.sequence_keyword].tolist()
self.text_captions_list = self.df['[final]text_caption'].tolist()
self.accession_id_list = self.df[args.id_keyword].tolist()
# parameters
self.text_max_length = args.text_max_length # max BERT sequence tokenization length
self.seq_max_length = 1024 # max ESM model
# tokenizers
self.text_tokenizer = AutoTokenizer.from_pretrained(args.text_model_path) # for text encoder
_, self.sequence_tokenizer = pretrained.load_model_and_alphabet(args.seq_model_path) # for protein encoder
def caption_tokenizer(self, batch_captions: list) -> dict:
# transform input text tokens
text_inputs = self.text_tokenizer.batch_encode_plus(
batch_captions,
truncation=True,
max_length=self.text_max_length,
padding='max_length',
return_tensors='pt',
return_attention_mask=True,
return_token_type_ids=False
)
# track the original natural language captions
text_inputs['orig_captions'] = batch_captions
return text_inputs
def protein_tokenizer(self, batch_sequences: list) -> dict:
# perpare data for ESM
batch_converter = self.sequence_tokenizer.get_batch_converter()
batch_labels, batch_str, batch_tokens = batch_converter(batch_sequences)
# pad sequences
batch_tokens = torch.cat((
batch_tokens,
torch.ones((1,1024-batch_tokens.shape[1])),
), dim=-1
)
sequence_inputs = {
'protein_sequence_labels': batch_labels, # UniProtKB id
'protein_sequence_str': batch_str, # original protein sequence (in amino acids)
'protein_sequence_tokens': batch_tokens.long() # training data
}
return sequence_inputs
def __getitem__(self, idx: torch.Tensor) -> (
dict,
dict
):
protein_sequence = self.protein_sequence_list[idx]
text_captions = self.text_captions_list[idx]
accession_id = self.accession_id_list[idx]
# prepare protein sequence in ESM format (e.g. tuple: (header, sequence)):
batch_sequences = [
(accession_id, protein_sequence)
]
text_data = self.caption_tokenizer(batch_captions=[text_captions])
protein_data = self.protein_tokenizer(batch_sequences=batch_sequences)
return (
text_data['input_ids'],
protein_data['protein_sequence_tokens']
)
def __len__(self):
return self.length
######################
# Default DataModule #
######################
class Default_DataModule(LightningDataModule):
def __init__(self, args):
super().__init__()
self.args = args
# construct dataset iterator
dataset_options = {
'default': TextSeqPairing_Dataset,
'masked': MaskTextSeqPairing_Dataset,
'pfam': Pfam_TextSeqPairing_Dataset,
'pfam_ablated': Pfam_TextSeqPairing_Dataset
}
self.dataset_class = dataset_options.get(args.dataset_type, TextSeqPairing_Dataset)
def prepare_data(self):
pass
def setup(self, stage=None):
if self.trainer is not None:
print(f"Number of GPUs: {self.trainer.world_size}")
print(f"Current GPU index: {self.trainer.local_rank}")
# Load Swiss-Prot data
df = self.load_swiss_prot()
# Split the dataframe into train and valid sets
train_df, valid_df = train_test_split(
df,
test_size=self.args.valid_size,
random_state=self.args.seed
)
print(f"Available memory after pfam_df: {check_available_memory()} GB")
# Define datasets and dataloaders
self.train_dataset = self.dataset_class(args=self.args, df=train_df)
self.valid_dataset = self.dataset_class(args=self.args, df=valid_df)
def load_swiss_prot(self) -> pd.Series:
# Load and preprocess data (called on each GPU/TPU in DDP)
print(f'Load Swiss-Prot data...')
# Load Swiss-Prot data
df = pd.read_csv(os.path.expanduser(self.args.data_path))
df = df[df['protein_sequence'].apply(lambda seq: len(seq) <= 1022)]
return df
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.args.batch_size,
num_workers=self.args.num_workers,
shuffle=True,
pin_memory=True
)
def val_dataloader(self):
return DataLoader(
self.valid_dataset,
batch_size=self.args.batch_size,
num_workers=self.args.num_workers,
pin_memory=True
)
def test_dataloader(self):
# Define test dataloader if needed
pass
################################
# Facilitator Dataset Iterator #
################################
class Facilitator_Dataset(Dataset):
def __init__(self, args: any, dataset: dict):
# Determine the device based on the number of GPUs
device = 'cuda' if args.num_gpus >= 1 else 'cpu'
# Check if text_embeddings is a list and convert to a tensor
if isinstance(dataset['text_embedding'], list):
# Convert list elements to tensors if they are not already
text_emb_tensors = [torch.tensor(emb).to(device) if not isinstance(emb, torch.Tensor) else emb.to(device) for emb in dataset['text_embedding']]
# Stack the list of tensors
self.text_embeddings = torch.stack(text_emb_tensors)
else:
self.text_embeddings = dataset['text_embedding'].to(device)
# Check if protein_embeddings is a list and convert to a tensor
if isinstance(dataset['protein_embedding'], list):
# Convert list elements to tensors if they are not already
protein_emb_tensors = [torch.tensor(emb).to(device) if not isinstance(emb, torch.Tensor) else emb.to(device) for emb in dataset['protein_embedding']]
# Stack the list of tensors
self.protein_embeddings = torch.stack(protein_emb_tensors)
else:
self.protein_embeddings = dataset['protein_embedding'].to(device)
def __getitem__(self, idx: torch.Tensor) -> (
torch.Tensor,
torch.Tensor
):
z_t = self.text_embeddings[idx]
z_p = self.protein_embeddings[idx]
return (
z_t,
z_p
)
def __len__(self):
return len(self.text_embeddings)
###########################
# Facilitator Data Module #
###########################
class Facilitator_DataModule(LightningDataModule):
def __init__(self, args):
super().__init__()
self.args = args
self.OOD_pfam_labels = [
'PF18369', # Polyketide synthase dimerisation element domain
'PF04680', # Opioid growth factor receptor repeat
'PF17988', # VEGFR-2 Transmembrane domain
'PF12325', # TATA element modulatory factor 1 TATA binding
'PF03272', # Putative mucin or carbohydrate-binding module
'PF03938', # Outer membrane protein (OmpH-like)
'PF17724', # Family of unknown function (DUF5568)
'PF10696', # Protein of unknown function
'PF11968', # 25S rRNA (adenine(2142)-N(1))-methyltransferase, Bmt2
'PF04153' # NOT2/NOT3/NOT5 C-terminal
]
# prepare embeddings
#self.embedding_data = torch.load(args.swissprot_data_path)
# dataset iterator
#dataset = Facilitator_Dataset(args=args, dataset=self.embedding_data)
# create a clone of the dataset
#cloned_dataset = copy.deepcopy(dataset)
# Get indices and split them
#indices = list(range(len(dataset)))
#train_indices, valid_indices = train_test_split(indices, test_size=args.valid_size, random_state=args.seed)
# create full dataloader
#self.all_dataloader = DataLoader(cloned_dataset, batch_size=args.batch_size, shuffle=False)
# Create PyTorch DataLoader using the indices
#self.train_sampler = Subset(dataset, train_indices)
#self.valid_sampler = Subset(dataset, valid_indices)
#train_dataloader = DataLoader(train_sampler, batch_size=args.batch_size, shuffle=True)
#valid_dataloader = DataLoader(test_sampler, batch_size=args.batch_size, shuffle=False)
##########################################
# Load Stage 1 SwissProt+Pfam Embeddings #
##########################################
# initialize the embedding data to None
self.swissprot_data, self.pfam_data = None, None
# get both the swissprot and pfam dataset iterator in one
if (args.swissprot_data_path != 'None') and (args.pfam_data_path != 'None'):
print('Load both SwissProt and Pfam dataset...')
self.train_dataset, self.valid_dataset, self.all_swiss_dataloader, self.all_pfam_dataloader = self.load_both()
# get the swissprot dataset iterator
elif args.pfam_data_path == 'None':
print('Load SwissProt dataset...')
self.train_dataset, self.valid_dataset, self.all_swiss_dataloader = self.load_swissprot()
self.all_pfam_dataloader = None
# get the pfam dataset iterator
elif args.swissprot_data_path == 'None':
print('Load Pfam dataset...')
self.train_dataset, self.valid_dataset, self.all_pfam_dataloader = self.load_pfam()
self.all_swiss_dataloader = None
def load_swissprot(self):
# prepare embeddings
self.swissprot_data = torch.load(self.args.swissprot_data_path)
# dataset iterator
swiss_dataset = Facilitator_Dataset(args=self.args, dataset=self.swissprot_data)
# create a clone of the dataset
cloned_swiss_dataset = copy.deepcopy(swiss_dataset)
# Get indices and split them
indices = list(range(len(swiss_dataset)))
train_indices, valid_indices = train_test_split(indices, test_size=self.args.valid_size, random_state=self.args.seed)
# Create Pytorch iterator using the indices
swiss_train_subset = Subset(swiss_dataset, train_indices)
swiss_valid_subset = Subset(swiss_dataset, valid_indices)
# Create Pytorch dataloader on all samples
swiss_all_dataloader = DataLoader(cloned_swiss_dataset, batch_size=self.args.batch_size, shuffle=False)
return (
swiss_train_subset,
swiss_valid_subset,
swiss_all_dataloader
)
def load_pfam(self):
# prepare embeddings
self.pfam_data = torch.load(self.args.pfam_data_path)
# dataset iterator
pfam_dataset = Facilitator_Dataset(args=self.args, dataset=self.pfam_data)
# create a clone of the dataset
cloned_pfam_dataset = copy.deepcopy(pfam_dataset)
# Get indices and split them
indices = list(range(len(pfam_dataset)))
train_indices, valid_indices = train_test_split(indices, test_size=self.args.valid_size, random_state=self.args.seed)
# Create Pytorch Dataloader using the indices
pfam_train_subset = Subset(pfam_dataset, train_indices)
pfam_valid_subset = Subset(pfam_dataset, valid_indices)
# Create Pytorch dataloader on all samples
pfam_all_dataloader = DataLoader(cloned_pfam_dataset, batch_size=self.args.batch_size, shuffle=False)
return (
pfam_train_subset,
pfam_valid_subset,
pfam_all_dataloader
)
def load_both(self):
# get swissprot
swissprot_train_subset, swissprot_valid_subset, swissprot_all_dataloader = self.load_swissprot()
# get pfam
pfam_train_subset, pfam_valid_subset, pfam_all_dataloader = self.load_pfam()
# combined subsets
combined_train_subset = ConcatDataset([swissprot_train_subset, pfam_train_subset])
combined_valid_subset = ConcatDataset([swissprot_valid_subset, pfam_valid_subset])
return (
combined_train_subset,
combined_valid_subset,
swissprot_all_dataloader,
pfam_all_dataloader
)
def train_dataloader(self):
return DataLoader(
self.train_dataset,
#self.train_sampler,
batch_size=self.args.batch_size,
#num_workers=self.args.num_workers,
shuffle=True,
#pin_memory=True
)
def val_dataloader(self):
return DataLoader(
self.valid_dataset,
#self.valid_sampler,
batch_size=self.args.batch_size,
#num_workers=self.args.num_workers,
#pin_memory=True
)
def test_dataloader(self):
# Define test dataloader if needed
pass
|