BioM3 / run_ProteoScribe_sample.py
Niksa Praljak
Add hardware details in README and make proteoscribe updates
8b00415
from argparse import Namespace
import json
import pandas as pd
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
import Stage3_source.PL_wrapper as Stage3_PL_mod
import Stage3_source.cond_diff_transformer_layer as Stage3_mod
import Stage3_source.sampling_analysis as Stage3_sample_tools
import Stage3_source.animation_tools as Stage3_ani_tools
# Step 1: Load JSON configuration
def load_json_config(json_path):
"""
Load JSON configuration file.
"""
with open(json_path, "r") as f:
config = json.load(f)
# print("Loaded JSON config:", config)
return config
# Step 2: Convert JSON dictionary to Namespace
def convert_to_namespace(config_dict):
"""
Recursively convert a dictionary to an argparse Namespace.
"""
for key, value in config_dict.items():
if isinstance(value, dict): # Recursively handle nested dictionaries
config_dict[key] = convert_to_namespace(value)
return Namespace(**config_dict)
# Step 3: load model with pretrained weights
def prepare_model(args, config_args) ->nn.Module:
"""
Prepare the model and PyTorch Lightning Trainer using a flat args object.
"""
# Initialize the model graph
model = Stage3_mod.get_model(
args=config_args,
data_shape=(config_args.image_size, config_args.image_size),
num_classes=config_args.num_classes
)
# Load state_dict into the model with map_location="cpu"
model.load_state_dict(torch.load(args.model_path, map_location=config_args.device))
model.eval()
print(f"Stage 3 model loaded from: {args.model_path} (loaded on {config_args.device})")
return model
# Step 4: Sample sequences from the model
@torch.no_grad()
def batch_stage3_generate_sequences(
args: any,
model: nn.Module,
z_t: torch.Tensor
) -> pd.Series:
"""
Generates protein sequences in batches using a denoising model.
Args:
args (any): Configuration object containing model and sampling parameters.
model (nn.Module): The pre-trained model used for denoising and generation.
z_t (torch.Tensor): Input tensor representing initial samples for sequence generation.
Returns:
pd.Series: A dictionary containing generated sequences for each replica.
"""
# Handle z_t if passed as a list of tensors
if isinstance(z_t, list) and all(isinstance(item, torch.Tensor) for item in z_t):
print(f"z_t is a list of tensors with {len(z_t)} tensors.")
z_t = torch.stack(z_t)
# Move model and inputs to the target device (CPU or CUDA)
model.to(args.device)
z_t = z_t.to(args.device)
# Amino acid tokenization including special characters
tokens = [
'-', '<START>', 'A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M',
'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y', '<END>', '<PAD>',
'X', 'U', 'Z', 'B', 'O' # Special characters
]
# Initialize a dictionary to store generated sequences for each replica
design_sequence_dict = {f'replica_{ii}': [] for ii in range(args.num_replicas)}
# Loop over input samples (each z_t) and generate sequences
for idx_sample, z_text_sample in enumerate(z_t):
# Process in batches to optimize memory and speed
for batch_start in range(0, args.num_replicas, args.batch_size_sample):
current_batch_size = min(args.batch_size_sample, args.num_replicas - batch_start)
# Prepare batched input for current batch
batched_z_text_sample = z_text_sample.unsqueeze(0).repeat(current_batch_size, 1)
# Generate random permutations for each sample in the batch
batch_perms = torch.stack([torch.randperm(args.diffusion_steps) for _ in range(current_batch_size)])
# Generate denoised samples using the model
mask_realization_list, _ = Stage3_sample_tools.batch_generate_denoised_sampled(
args=args,
model=model,
extract_digit_samples=torch.zeros(current_batch_size, args.diffusion_steps),
extract_time=torch.zeros(current_batch_size).long(),
extract_digit_label=batched_z_text_sample,
sampling_path=batch_perms
)
# Convert generated numeric sequences to amino acid sequences
for i, mask_realization in enumerate(mask_realization_list[-1]):
design_sequence = Stage3_ani_tools.convert_num_to_char(tokens, mask_realization[0])
clean_sequence = design_sequence.replace('<START>', '').replace('<END>', '').replace('<PAD>', '')
design_sequence_dict[f'replica_{batch_start + i}'].append(clean_sequence)
return design_sequence_dict
# Step 5: Argument Parser Function
def parse_arguments():
parser = argparse.ArgumentParser(description="BioM3 Inference Script (Stage 1)")
parser.add_argument('--json_path', type=str, required=True,
help="Path to the JSON configuration file (stage1_config.json)")
parser.add_argument('--model_path', type=str, required=True,
help="Path to the pre-trained model weights (pytorch_model.bin)")
parser.add_argument('--input_path', type=str, required=True,
help="Path to save input embeddings")
parser.add_argument('--output_path', type=str, required=True,
help="Path to save output embeddings")
return parser.parse_args()
if __name__ == '__main__':
# Parse arguments
config_args_parser = parse_arguments()
# Load and convert JSON config
config_dict = load_json_config(config_args_parser.json_path)
config_args = convert_to_namespace(config_dict)
# Set device if not specified in config
config_args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# load test dataset
embedding_dataset = torch.load(config_args_parser.input_path)
# load model
model = prepare_model(args=config_args_parser, config_args=config_args)
# sample sequences
design_sequence_dict = batch_stage3_generate_sequences(
args=config_args,
model=model,
z_t=embedding_dataset['z_c']
)
print(f'{design_sequence_dict=}')