outputs / README.md
nishita's picture
update model card README.md
27bbd33
metadata
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: outputs
    results: []

outputs

This model is a fine-tuned version of mrm8488/t5-base-finetuned-common_gen on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2833
  • Rouge1: 79.0721
  • Rouge2: 59.355
  • Rougel: 70.9787
  • Rougelsum: 70.9177
  • Gen Len: 16.3819

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 241 2.3934 75.6585 53.2221 65.7693 65.7796 16.4214
No log 2.0 482 2.4223 76.75 55.466 67.3377 67.3425 16.4381
0.5668 3.0 723 2.5147 77.5314 56.5654 68.4518 68.4263 16.4235
0.5668 4.0 964 2.5164 78.3267 57.4609 69.1759 69.1835 16.4381
0.4546 5.0 1205 2.6058 78.6699 58.2725 69.8265 69.8802 16.358
0.4546 6.0 1446 2.6295 78.8943 58.182 69.5933 69.619 16.4464
0.4014 7.0 1687 2.6592 79.0497 58.7135 70.2046 70.2047 16.4152
0.4014 8.0 1928 2.6610 79.1756 59.143 70.5631 70.5854 16.4235
0.3652 9.0 2169 2.6636 79.2156 59.3209 70.5418 70.5757 16.4308
0.3652 10.0 2410 2.6647 78.9922 59.0252 70.49 70.5262 16.3569
0.341 11.0 2651 2.7105 79.0372 58.7891 70.2666 70.3333 16.4131
0.341 12.0 2892 2.7829 79.2323 59.4941 70.6877 70.7283 16.3684
0.3199 13.0 3133 2.7344 79.0326 58.8869 70.2648 70.2983 16.4329
0.3199 14.0 3374 2.7568 79.172 59.1695 70.5229 70.5505 16.435
0.301 15.0 3615 2.7773 78.9152 58.8776 70.368 70.3922 16.3923
0.301 16.0 3856 2.8178 79.1939 59.1455 70.6938 70.7153 16.4693
0.2883 17.0 4097 2.8105 79.1307 59.114 70.6573 70.67 16.4287
0.2883 18.0 4338 2.8360 78.8425 58.6959 70.4532 70.3955 16.358
0.2779 19.0 4579 2.8606 79.3713 59.3462 70.6531 70.648 16.3632
0.2779 20.0 4820 2.8513 79.0083 58.817 70.5779 70.5775 16.435
0.2664 21.0 5061 2.8882 79.1277 59.1771 70.8215 70.7963 16.4194
0.2664 22.0 5302 2.8852 79.0191 59.0226 70.6604 70.6499 16.3715
0.258 23.0 5543 2.9253 79.3219 59.1689 70.8438 70.8462 16.41
0.258 24.0 5784 2.9020 79.1941 59.044 70.6849 70.6449 16.3996
0.2494 25.0 6025 2.9579 79.5266 59.8762 71.5284 71.5085 16.4422
0.2494 26.0 6266 2.9660 79.1653 59.3299 70.7888 70.7755 16.4475
0.2415 27.0 6507 2.9682 79.3267 59.7158 71.1062 71.0864 16.411
0.2415 28.0 6748 3.0086 79.0646 59.1926 70.8172 70.78 16.4422
0.2415 29.0 6989 3.0190 78.9127 58.8431 70.4618 70.4597 16.4308
0.2361 30.0 7230 2.9958 79.1999 59.5494 70.9411 70.9 16.3684
0.2361 31.0 7471 2.9824 79.0219 59.0778 70.6465 70.6445 16.3809
0.2295 32.0 7712 3.0079 79.1633 59.4146 71.0352 70.9144 16.4017
0.2295 33.0 7953 2.9894 79.106 59.0905 70.644 70.622 16.4069
0.2247 34.0 8194 3.0256 78.8789 59.0956 70.8588 70.796 16.3954
0.2247 35.0 8435 3.0451 78.7977 58.889 70.6925 70.6408 16.3975
0.2196 36.0 8676 3.0475 78.8942 58.8944 70.4803 70.4858 16.3871
0.2196 37.0 8917 3.0289 78.7668 58.7055 70.3606 70.3058 16.411
0.2157 38.0 9158 3.0748 78.833 58.6404 70.271 70.2338 16.4266
0.2157 39.0 9399 3.0665 79.2216 59.3481 70.9647 70.9076 16.4058
0.2104 40.0 9640 3.0773 78.9717 58.8784 70.6392 70.6359 16.3704
0.2104 41.0 9881 3.0823 78.901 58.9511 70.737 70.7051 16.3788
0.2061 42.0 10122 3.0637 78.8689 58.8098 70.754 70.7783 16.36
0.2061 43.0 10363 3.0965 79.4409 59.5757 71.2304 71.2553 16.4422
0.2027 44.0 10604 3.1178 78.8964 58.9388 70.5416 70.5367 16.4048
0.2027 45.0 10845 3.1078 79.2306 59.5613 71.1202 71.0741 16.4089
0.1998 46.0 11086 3.1432 79.2393 59.5587 71.1138 71.0502 16.4485
0.1998 47.0 11327 3.1493 79.3553 59.5023 71.0459 71.0508 16.4256
0.1966 48.0 11568 3.1670 79.0395 59.1524 70.9374 70.921 16.4006
0.1966 49.0 11809 3.1580 79.2359 59.2038 71.0061 70.9725 16.4568
0.1941 50.0 12050 3.1458 79.1914 59.4751 71.2448 71.2131 16.437
0.1941 51.0 12291 3.1379 79.2891 59.6776 71.3416 71.2787 16.4287
0.1903 52.0 12532 3.1618 79.4208 59.7335 71.4722 71.4196 16.4173
0.1903 53.0 12773 3.1712 79.2976 59.736 71.1151 71.0491 16.4454
0.188 54.0 13014 3.1795 79.2538 59.2768 71.0137 70.9602 16.4183
0.188 55.0 13255 3.1836 79.4504 59.3201 71.0908 71.0614 16.4277
0.188 56.0 13496 3.1800 79.067 59.1309 70.7069 70.6896 16.3996
0.1858 57.0 13737 3.1660 79.2369 59.5092 71.0077 70.9537 16.3871
0.1858 58.0 13978 3.1886 79.0404 58.8652 70.6484 70.6162 16.3798
0.1849 59.0 14219 3.1413 79.1468 59.1964 70.8362 70.8076 16.4121
0.1849 60.0 14460 3.1778 79.0189 58.9894 70.597 70.5447 16.3788
0.1824 61.0 14701 3.1674 78.8303 58.7354 70.4517 70.4009 16.3871
0.1824 62.0 14942 3.1756 78.8914 58.7551 70.3439 70.3031 16.3965
0.1793 63.0 15183 3.1943 78.9093 58.8599 70.415 70.3998 16.4152
0.1793 64.0 15424 3.1970 78.8353 58.8096 70.4231 70.3813 16.4194
0.1768 65.0 15665 3.2301 79.0958 59.2143 70.837 70.7973 16.4162
0.1768 66.0 15906 3.2415 79.1112 59.1872 70.7534 70.7145 16.4173
0.177 67.0 16147 3.2332 79.0807 59.3005 70.6878 70.6351 16.3757
0.177 68.0 16388 3.2415 79.0587 59.1872 70.6691 70.6295 16.3819
0.1744 69.0 16629 3.2454 79.3829 59.5478 70.997 70.9835 16.4037
0.1744 70.0 16870 3.2239 79.1289 59.1661 70.7455 70.684 16.4412
0.1715 71.0 17111 3.2056 79.2074 59.1811 70.7366 70.682 16.4339
0.1715 72.0 17352 3.2101 79.1756 59.1883 70.8208 70.821 16.4079
0.1722 73.0 17593 3.2086 79.4652 59.7631 71.3223 71.2917 16.4214
0.1722 74.0 17834 3.2269 79.0154 59.0411 70.6754 70.6184 16.3621
0.17 75.0 18075 3.2389 79.1212 59.3143 70.7629 70.6935 16.3444
0.17 76.0 18316 3.2387 79.1148 59.4001 70.897 70.8525 16.3663
0.1682 77.0 18557 3.2505 79.0955 59.2033 70.8455 70.8303 16.3632
0.1682 78.0 18798 3.2670 79.1781 59.1849 70.8704 70.8286 16.3611
0.1686 79.0 19039 3.2825 79.0246 59.1434 70.7866 70.7353 16.3559
0.1686 80.0 19280 3.2816 79.0431 58.9944 70.6819 70.6257 16.3486
0.1664 81.0 19521 3.2567 79.0287 59.0805 70.7245 70.6889 16.3392
0.1664 82.0 19762 3.2750 78.9783 59.1123 70.6961 70.6369 16.3465
0.1659 83.0 20003 3.2757 78.9774 59.2248 70.7978 70.7407 16.3455
0.1659 84.0 20244 3.2800 79.0205 59.2371 70.8016 70.7532 16.3704
0.1659 85.0 20485 3.2723 78.9507 59.1004 70.6419 70.5825 16.3663
0.165 86.0 20726 3.2723 78.9698 59.1362 70.7738 70.7018 16.3652
0.165 87.0 20967 3.2740 79.0156 59.2383 70.7799 70.7075 16.384
0.1637 88.0 21208 3.2628 79.0806 59.3468 70.8158 70.753 16.3725
0.1637 89.0 21449 3.2605 78.9712 59.223 70.7653 70.7021 16.3621
0.1642 90.0 21690 3.2738 79.0793 59.3309 70.8753 70.8282 16.385
0.1642 91.0 21931 3.2674 78.9877 59.1468 70.7031 70.6598 16.3694
0.1636 92.0 22172 3.2706 79.006 59.1366 70.7069 70.6638 16.3757
0.1636 93.0 22413 3.2783 79.0874 59.2523 70.7881 70.7397 16.3746
0.1629 94.0 22654 3.2801 79.1126 59.2826 70.8352 70.7865 16.3715
0.1629 95.0 22895 3.2797 79.0586 59.3089 70.8126 70.7697 16.3757
0.1625 96.0 23136 3.2826 79.1019 59.3294 70.8399 70.803 16.3777
0.1625 97.0 23377 3.2844 79.0739 59.3167 70.9062 70.846 16.3767
0.1622 98.0 23618 3.2826 79.0739 59.3167 70.9062 70.846 16.3767
0.1622 99.0 23859 3.2830 79.0721 59.355 70.9787 70.9177 16.3819
0.161 100.0 24100 3.2833 79.0721 59.355 70.9787 70.9177 16.3819

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1