Model Card
Description
- Developed by: nkmry
- Languages: Japanese, English
- License: Apache-2.0
- Finetuned from model: llm-jp/llm-jp-3-13b
Uses
Use the code below to get started with the model.
from peft import PeftModel
from unsloth import FastLanguageModel
BASE_MODEL_ID = "llm-jp/llm-jp-3-13b"
ADAPTER_ID = "nkmry/llmjp-13b-comp"
# Get the base model
base_model, tokenizer = FastLanguageModel.from_pretrained(
model_name=BASE_MODEL_ID,
dtype=None,
load_in_4bit=True,
trust_remote_code=True,
)
# Apply the LoRA adapter
model = PeftModel.from_pretrained(
base_model,
model_id=ADAPTER_ID,
is_trainable=False
)
# Generate outputs
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
PROMPT = """### 指示
{input}
### 回答
"""
results = []
FastLanguageModel.for_inference(model)
for data in tqdm(datasets):
input = data["input"]
tokenized_input = tokenizer.encode(
PROMPT.format(input=input), add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
with open(f"./outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
Details
Training Data
Framework versions
- PyTorch 2.5.1
- Transformers 4.46.3
- Unsloth 2024.12.4
- PEFT 0.14.0
- xformers 0.0.2
Model tree for nkmry/llmjp-13b-comp
Base model
llm-jp/llm-jp-3-13b