Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -53,13 +53,21 @@ model = PeftModel.from_pretrained(
|
|
53 |
|
54 |
# Generate outputs
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
PROMPT = """### 指示
|
57 |
{input}
|
58 |
### 回答
|
59 |
"""
|
60 |
|
61 |
-
datasets = ...
|
62 |
-
|
63 |
results = []
|
64 |
FastLanguageModel.for_inference(model)
|
65 |
for data in tqdm(datasets):
|
@@ -78,6 +86,11 @@ for data in tqdm(datasets):
|
|
78 |
)[0]
|
79 |
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
|
80 |
results.append({"task_id": data["task_id"], "input": input, "output": output})
|
|
|
|
|
|
|
|
|
|
|
81 |
```
|
82 |
|
83 |
|
|
|
53 |
|
54 |
# Generate outputs
|
55 |
|
56 |
+
datasets = []
|
57 |
+
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
|
58 |
+
item = ""
|
59 |
+
for line in f:
|
60 |
+
line = line.strip()
|
61 |
+
item += line
|
62 |
+
if item.endswith("}"):
|
63 |
+
datasets.append(json.loads(item))
|
64 |
+
item = ""
|
65 |
+
|
66 |
PROMPT = """### 指示
|
67 |
{input}
|
68 |
### 回答
|
69 |
"""
|
70 |
|
|
|
|
|
71 |
results = []
|
72 |
FastLanguageModel.for_inference(model)
|
73 |
for data in tqdm(datasets):
|
|
|
86 |
)[0]
|
87 |
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
|
88 |
results.append({"task_id": data["task_id"], "input": input, "output": output})
|
89 |
+
|
90 |
+
with open(f"./outputs.jsonl", 'w', encoding='utf-8') as f:
|
91 |
+
for result in results:
|
92 |
+
json.dump(result, f, ensure_ascii=False)
|
93 |
+
f.write('\n')
|
94 |
```
|
95 |
|
96 |
|