librarian-bot's picture
Librarian Bot: Add base_model information to model
5d37418
|
raw
history blame
2.09 kB
---
license: apache-2.0
tags:
- generated_from_keras_callback
base_model: bert-base-uncased
model-index:
- name: nlp-esg-scoring/bert-base-finetuned-esg-gri-clean
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# nlp-esg-scoring/bert-base-finetuned-esg-gri-clean
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.9511
- Validation Loss: 1.5293
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -797, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.9468 | 1.5190 | 0 |
| 1.9433 | 1.5186 | 1 |
| 1.9569 | 1.4843 | 2 |
| 1.9510 | 1.5563 | 3 |
| 1.9451 | 1.5308 | 4 |
| 1.9576 | 1.5209 | 5 |
| 1.9464 | 1.5324 | 6 |
| 1.9525 | 1.5168 | 7 |
| 1.9488 | 1.5340 | 8 |
| 1.9511 | 1.5293 | 9 |
### Framework versions
- Transformers 4.20.1
- TensorFlow 2.8.2
- Datasets 2.3.2
- Tokenizers 0.12.1