kobart_16_5.6e-5_datav2_min30_lp5.0_temperature1.0

This model is a fine-tuned version of gogamza/kobart-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7174
  • Rouge1: 35.7621
  • Rouge2: 12.8914
  • Rougel: 23.6695
  • Bleu1: 29.9954
  • Bleu2: 17.513
  • Bleu3: 10.317
  • Bleu4: 5.8532
  • Gen Len: 49.3147

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Bleu1 Bleu2 Bleu3 Bleu4 Gen Len
1.9617 1.89 5000 2.6146 35.2828 12.4993 22.9894 29.2237 16.8919 9.7826 5.4461 48.0676
1.5272 3.78 10000 2.7174 35.7621 12.8914 23.6695 29.9954 17.513 10.317 5.8532 49.3147

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.