File size: 1,883 Bytes
75171c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: kobart_16_5.6e-5_datav2_min30_lp5.0_temperature1.0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# kobart_16_5.6e-5_datav2_min30_lp5.0_temperature1.0

This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7174
- Rouge1: 35.7621
- Rouge2: 12.8914
- Rougel: 23.6695
- Bleu1: 29.9954
- Bleu2: 17.513
- Bleu3: 10.317
- Bleu4: 5.8532
- Gen Len: 49.3147

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Bleu1   | Bleu2   | Bleu3  | Bleu4  | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:-------:|:------:|:------:|:-------:|
| 1.9617        | 1.89  | 5000  | 2.6146          | 35.2828 | 12.4993 | 22.9894 | 29.2237 | 16.8919 | 9.7826 | 5.4461 | 48.0676 |
| 1.5272        | 3.78  | 10000 | 2.7174          | 35.7621 | 12.8914 | 23.6695 | 29.9954 | 17.513  | 10.317 | 5.8532 | 49.3147 |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.1+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2