res_nw_eg_aragpt2-base

This model is a fine-tuned version of aubmindlab/aragpt2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1032
  • Bleu: 0.1405
  • Rouge1: 0.4455
  • Rouge2: 0.2251
  • Rougel: 0.4383

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Bleu Rouge1 Rouge2 Rougel
0.2542 1.0 7105 0.1199 0.0729 0.3187 0.1103 0.3094
0.1078 2.0 14210 0.1119 0.1044 0.3803 0.1636 0.3720
0.0972 3.0 21315 0.1077 0.1222 0.4109 0.1933 0.4033
0.0902 4.0 28420 0.1051 0.1312 0.4294 0.2090 0.4223
0.0846 5.0 35525 0.1032 0.1405 0.4455 0.2251 0.4383
0.0799 6.0 42630 0.1041 0.1454 0.4537 0.2338 0.4466
0.0759 7.0 49735 0.1044 0.1494 0.4623 0.2425 0.4553
0.0722 8.0 56840 0.1044 0.1527 0.4655 0.2470 0.4587
0.069 9.0 63945 0.1058 0.1536 0.4689 0.2489 0.4621
0.066 10.0 71050 0.1062 0.1550 0.4724 0.2523 0.4657

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for nlparabic/res_nw_eg_aragpt2-base

Finetuned
(8)
this model