amdchess-v6
This model is a fine-tuned version of amd/AMD-Llama-135m on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7752
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.GROKADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 0.25
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.2893 | 0.0030 | 5 | 4.4359 |
1.9121 | 0.0059 | 10 | 1.6234 |
1.5379 | 0.0089 | 15 | 1.5644 |
1.4848 | 0.0118 | 20 | 1.4063 |
1.3139 | 0.0148 | 25 | 1.2141 |
1.3932 | 0.0177 | 30 | 1.1964 |
1.0851 | 0.0207 | 35 | 1.2140 |
1.4024 | 0.0236 | 40 | 1.1328 |
1.0103 | 0.0266 | 45 | 1.0825 |
1.0929 | 0.0295 | 50 | 1.0315 |
1.0656 | 0.0325 | 55 | 1.1649 |
1.2373 | 0.0354 | 60 | 1.0288 |
0.9401 | 0.0384 | 65 | 1.0114 |
1.0497 | 0.0413 | 70 | 1.0588 |
1.045 | 0.0443 | 75 | 0.9853 |
0.8332 | 0.0472 | 80 | 1.0362 |
0.9828 | 0.0502 | 85 | 0.9737 |
0.9275 | 0.0531 | 90 | 0.9487 |
0.98 | 0.0561 | 95 | 0.9751 |
0.9864 | 0.0590 | 100 | 0.9215 |
0.9425 | 0.0620 | 105 | 0.9404 |
0.965 | 0.0649 | 110 | 0.9259 |
0.9435 | 0.0679 | 115 | 0.9167 |
0.9628 | 0.0708 | 120 | 0.9259 |
0.9193 | 0.0738 | 125 | 0.8986 |
0.9385 | 0.0767 | 130 | 0.9031 |
0.8773 | 0.0797 | 135 | 0.8952 |
0.7856 | 0.0826 | 140 | 0.8779 |
0.9448 | 0.0856 | 145 | 0.8809 |
0.8727 | 0.0885 | 150 | 0.8683 |
0.9208 | 0.0915 | 155 | 0.8790 |
0.8647 | 0.0945 | 160 | 0.8663 |
0.8454 | 0.0974 | 165 | 0.8706 |
0.9631 | 0.1004 | 170 | 0.8615 |
0.8628 | 0.1033 | 175 | 0.8588 |
0.9279 | 0.1063 | 180 | 0.8537 |
0.862 | 0.1092 | 185 | 0.8468 |
0.9091 | 0.1122 | 190 | 0.8471 |
0.8762 | 0.1151 | 195 | 0.8434 |
0.8887 | 0.1181 | 200 | 0.8431 |
0.823 | 0.1210 | 205 | 0.8388 |
0.8025 | 0.1240 | 210 | 0.8356 |
0.8372 | 0.1269 | 215 | 0.8315 |
0.7744 | 0.1299 | 220 | 0.8251 |
0.8919 | 0.1328 | 225 | 0.8212 |
0.7742 | 0.1358 | 230 | 0.8206 |
0.8345 | 0.1387 | 235 | 0.8170 |
0.8442 | 0.1417 | 240 | 0.8162 |
0.8268 | 0.1446 | 245 | 0.8149 |
0.8138 | 0.1476 | 250 | 0.8102 |
0.8336 | 0.1505 | 255 | 0.8086 |
0.889 | 0.1535 | 260 | 0.8088 |
0.7523 | 0.1564 | 265 | 0.8057 |
0.7892 | 0.1594 | 270 | 0.8049 |
0.7574 | 0.1623 | 275 | 0.8002 |
0.8518 | 0.1653 | 280 | 0.7987 |
0.8566 | 0.1682 | 285 | 0.7990 |
0.7946 | 0.1712 | 290 | 0.7967 |
0.8028 | 0.1741 | 295 | 0.7942 |
0.8159 | 0.1771 | 300 | 0.7932 |
0.7905 | 0.1800 | 305 | 0.7901 |
0.8025 | 0.1830 | 310 | 0.7899 |
0.7278 | 0.1860 | 315 | 0.7889 |
0.8105 | 0.1889 | 320 | 0.7878 |
0.7161 | 0.1919 | 325 | 0.7869 |
0.7971 | 0.1948 | 330 | 0.7847 |
0.7943 | 0.1978 | 335 | 0.7841 |
0.7868 | 0.2007 | 340 | 0.7831 |
0.7387 | 0.2037 | 345 | 0.7814 |
0.8157 | 0.2066 | 350 | 0.7804 |
0.8196 | 0.2096 | 355 | 0.7797 |
0.8074 | 0.2125 | 360 | 0.7793 |
0.8144 | 0.2155 | 365 | 0.7783 |
0.7863 | 0.2184 | 370 | 0.7775 |
0.7865 | 0.2214 | 375 | 0.7769 |
0.8075 | 0.2243 | 380 | 0.7765 |
0.8684 | 0.2273 | 385 | 0.7762 |
0.7657 | 0.2302 | 390 | 0.7759 |
0.7928 | 0.2332 | 395 | 0.7757 |
0.8031 | 0.2361 | 400 | 0.7755 |
0.738 | 0.2391 | 405 | 0.7753 |
0.7716 | 0.2420 | 410 | 0.7752 |
0.7283 | 0.2450 | 415 | 0.7752 |
0.8095 | 0.2479 | 420 | 0.7752 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.4.0+cu121
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 122
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for nlpguy/amdchess-v6
Base model
amd/AMD-Llama-135m