Model Description

BioMobileBERT is the result of training the MobileBERT-uncased model in a continual learning scenario for 200k training steps using a total batch size of 192 on the PubMed dataset.

Initialisation

We initialise our model with the pre-trained checkpoints of the MobileBERT-uncased model available on Huggingface.

Architecture

MobileBERT uses a 128-dimensional embedding layer followed by 1D convolutions to up-project its output to the desired hidden dimension expected by the transformer blocks. For each of these blocks, MobileBERT uses linear down-projection at the beginning of the transformer block and up-projection at its end, followed by a residual connection originating from the input of the block before down-projection. Because of these linear projections, MobileBERT can reduce the hidden size and hence the computational cost of multi-head attention and feed-forward blocks. This model additionally incorporates up to four feed-forward blocks in order to enhance its representation learning capabilities. Thanks to the strategically placed linear projections, a 24-layer MobileBERT (which is used in this work) has around 25M parameters.

Citation

If you use this model, please consider citing the following paper:

@article{rohanian2023effectiveness,
  title={On the effectiveness of compact biomedical transformers},
  author={Rohanian, Omid and Nouriborji, Mohammadmahdi and Kouchaki, Samaneh and Clifton, David A},
  journal={Bioinformatics},
  volume={39},
  number={3},
  pages={btad103},
  year={2023},
  publisher={Oxford University Press}
}
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nlpie/bio-mobilebert

Finetunes
3 models