distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9031
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1931 1.0 113 2.0840 0.39
1.5734 2.0 226 1.4764 0.53
1.2619 3.0 339 1.1045 0.68
1.0427 4.0 452 1.0008 0.74
0.7065 5.0 565 0.7131 0.83
0.4206 6.0 678 0.6687 0.8
0.5466 7.0 791 0.5807 0.83
0.1232 8.0 904 0.6143 0.83
0.2593 9.0 1017 0.6080 0.89
0.0496 10.0 1130 0.7360 0.84
0.0127 11.0 1243 0.7648 0.85
0.0993 12.0 1356 0.8416 0.85
0.0068 13.0 1469 0.7966 0.85
0.0054 14.0 1582 0.8122 0.86
0.0044 15.0 1695 0.8788 0.87
0.0037 16.0 1808 0.8760 0.87
0.0892 17.0 1921 0.8911 0.87
0.0032 18.0 2034 0.9083 0.86
0.0029 19.0 2147 0.9172 0.86
0.0037 20.0 2260 0.9031 0.87

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nomad-ai/distilhubert-finetuned-gtzan

Finetuned
(425)
this model

Dataset used to train nomad-ai/distilhubert-finetuned-gtzan

Evaluation results