nomnoos37's picture
nomnoos37/stt-turbo-1226-v1.4
a740ae2 verified
|
raw
history blame
4.07 kB
metadata
library_name: peft
language:
  - ko
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
model-index:
  - name: Whisper Small ko
    results: []

Whisper Small ko

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the custom dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2388

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.8865 0.0901 10 1.5498
0.8668 0.1802 20 1.4739
0.7179 0.2703 30 1.2411
0.3916 0.3604 40 0.8666
0.219 0.4505 50 0.7558
0.1545 0.5405 60 0.6752
0.1278 0.6306 70 0.5819
0.0983 0.7207 80 0.5394
0.0908 0.8108 90 0.5013
0.0718 0.9009 100 0.4740
0.0773 0.9910 110 0.4579
0.0665 1.0811 120 0.4430
0.0608 1.1712 130 0.4284
0.0612 1.2613 140 0.4136
0.0605 1.3514 150 0.4104
0.0632 1.4414 160 0.3857
0.0534 1.5315 170 0.3678
0.0527 1.6216 180 0.3584
0.0516 1.7117 190 0.3458
0.0467 1.8018 200 0.3373
0.0526 1.8919 210 0.3299
0.0363 1.9820 220 0.3280
0.0468 2.0721 230 0.3202
0.0473 2.1622 240 0.3152
0.0394 2.2523 250 0.3065
0.0356 2.3423 260 0.3009
0.042 2.4324 270 0.2934
0.042 2.5225 280 0.2911
0.0314 2.6126 290 0.2899
0.0397 2.7027 300 0.2817
0.0377 2.7928 310 0.2743
0.0412 2.8829 320 0.2695
0.0362 2.9730 330 0.2649
0.0321 3.0631 340 0.2589
0.0406 3.1532 350 0.2572
0.028 3.2432 360 0.2568
0.0345 3.3333 370 0.2568
0.0346 3.4234 380 0.2544
0.0391 3.5135 390 0.2513
0.0362 3.6036 400 0.2468
0.0304 3.6937 410 0.2446
0.032 3.7838 420 0.2428
0.0307 3.8739 430 0.2422
0.0301 3.9640 440 0.2414
0.0315 4.0541 450 0.2396
0.0336 4.1441 460 0.2396
0.024 4.2342 470 0.2396
0.0286 4.3243 480 0.2391
0.0289 4.4144 490 0.2389
0.0323 4.5045 500 0.2388

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0