|
--- |
|
base_model: |
|
- unsloth/Mistral-Nemo-Instruct-2407 |
|
--- |
|
Note: This model is no longer the optimal W8A8 quantization, please consider using a better quantization model I made later: |
|
noneUsername/Mistral-Nemo-Instruct-2407-W8A8-Dynamic-Per-Token-better |
|
|
|
My first quantization uses the quantization method provided by vllm: |
|
|
|
https://docs.vllm.ai/en/latest/quantization/int8.html |
|
|
|
NUM_CALIBRATION_SAMPLES = 2048 |
|
|
|
MAX_SEQUENCE_LENGTH = 8192 |
|
|
|
smoothing_strength=0.8 |
|
|
|
I will verify the validity of the model and update the readme as soon as possible. |
|
|
|
edit: The performance in my ERP test was comparable to Mistral-Nemo-Instruct-2407-GPTQ-INT8, which I consider a successful quantization. |
|
|
|
vllm (pretrained=/root/autodl-tmp/Mistral-Nemo-Instruct-2407,add_bos_token=true,tensor_parallel_size=2,max_model_len=4096,gpu_memory_utilization=0.85,swap_space=0), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto |
|
|Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |
|
|-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |
|
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.800|± |0.0253| |
|
| | |strict-match | 5|exact_match|↑ |0.784|± |0.0261| |
|
|
|
|
|
lm_eval --model vllm --model_args pretrained="/mnt/e/Code/models/Mistral-Nemo-Instruct-2407-W8A8-Dynamic-Per-Token",add_bos_token=true,dtype=half,tensor_parallel_size=2,max_model_len=4096,gpu_memory_utilization=0.85,swap_space=0 --tasks gsm8k --num_fewshot 5 --limit 250 --batch_size 1 |
|
vllm (pretrained=/mnt/e/Code/models/Mistral-Nemo-Instruct-2407-W8A8-Dynamic-Per-Token,add_bos_token=true,dtype=half,tensor_parallel_size=2,max_model_len=4096,gpu_memory_utilization=0.85,swap_space=0), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: 1 |
|
|Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |
|
|-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |
|
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.784|± |0.0261| |
|
| | |strict-match | 5|exact_match|↑ |0.768|± |0.0268| |
|
In gsm8k, still a bit worse than the original... |
|
|
|
|
|
lm_eval --model vllm \ |
|
l_args > --model_args pretrained="/mnt/e/Code/models/Mistral-Nemo-Instruct-2407-W8A8-Dynamic-Per-Token",add_bos_token=true,dtype=half,tensor_parallel_size=2,max_model_len=4096,gpu_memory_utilization=0.85,swap_space=0 \ |
|
ks hellaswag \ |
|
> --tasks hellaswag \ |
|
> --limit 150 \ |
|
> --num_fewshot 10 \ |
|
--batch_size 1 |
|
|
|
vllm (pretrained=/mnt/e/Code/models/Mistral-Nemo-Instruct-2407-W8A8-Dynamic-Per-Token,add_bos_token=true,dtype=half,tensor_parallel_size=2,max_model_len=4096,gpu_memory_utilization=0.85,swap_space=0), gen_kwargs: (None), limit: 150.0, num_fewshot: 10, batch_size: 1 |
|
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |
|
|---------|------:|------|-----:|--------|---|-----:|---|-----:| |
|
|hellaswag| 1|none | 10|acc |↑ |0.5800|± |0.0404| |
|
| | |none | 10|acc_norm|↑ |0.7533|± |0.0353| |