It is worth noting that compared with the prince-canuma version, this version is smaller in size after quantization and its accuracy is also improved by one percentage point.
In my ERP testing, this model did perform better.
vllm (pretrained=/root/autodl-tmp/Ministral-8B-Instruct-2410-HF,add_bos_token=true,tensor_parallel_size=2,max_model_len=2048,dtype=float16), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
gsm8k | 3 | flexible-extract | 5 | exact_match | ↑ | 0.820 | ± | 0.0243 |
strict-match | 5 | exact_match | ↑ | 0.816 | ± | 0.0246 |
vllm (pretrained=/root/autodl-tmp/Ministral-8B-Instruct-2410-HF,add_bos_token=true,tensor_parallel_size=2,max_model_len=2048,dtype=bfloat16), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
gsm8k | 3 | flexible-extract | 5 | exact_match | ↑ | 0.804 | ± | 0.0252 |
strict-match | 5 | exact_match | ↑ | 0.804 | ± | 0.0252 |
vllm (pretrained=/root/autodl-tmp/Ministral-8B-Instruct-2410-HF,add_bos_token=true,tensor_parallel_size=2,max_model_len=2048,dtype=float32), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
gsm8k | 3 | flexible-extract | 5 | exact_match | ↑ | 0.820 | ± | 0.0243 |
strict-match | 5 | exact_match | ↑ | 0.816 | ± | 0.0246 |
vllm (pretrained=/root/autodl-tmp/output,add_bos_token=true,tensor_parallel_size=2,max_model_len=2048,dtype=float16), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
gsm8k | 3 | flexible-extract | 5 | exact_match | ↑ | 0.816 | ± | 0.0246 |
strict-match | 5 | exact_match | ↑ | 0.812 | ± | 0.0248 |
vllm (pretrained=/root/autodl-tmp/output,add_bos_token=true,tensor_parallel_size=2,max_model_len=2048,dtype=bfloat16), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
gsm8k | 3 | flexible-extract | 5 | exact_match | ↑ | 0.796 | ± | 0.0255 |
strict-match | 5 | exact_match | ↑ | 0.792 | ± | 0.0257 |
- Downloads last month
- 4
Model tree for noneUsername/TouchNight-Ministral-8B-Instruct-2410-HF-W8A8-Dynamic-Per-Token
Base model
TouchNight/Ministral-8B-Instruct-2410-HF