Added Quantisation Information

#5
by lgcharpe - opened
Files changed (1) hide show
  1. README.md +69 -0
README.md CHANGED
@@ -374,4 +374,73 @@ model = AutoModelForCausalLM.from_pretrained(
374
  load_in_8bit=True,
375
  torch_dtype=torch.bfloat16
376
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377
  ```
 
374
  load_in_8bit=True,
375
  torch_dtype=torch.bfloat16
376
  )
377
+ ```
378
+
379
+ _____
380
+ ## Quantization
381
+
382
+ ### Provided files
383
+
384
+ | Name | Quant method | Bits Per Weight | Size | Max RAM/VRAM required | Use case |
385
+ | ---- | ---- | ---- | ---- | ---- | ----- |
386
+ | [normistral-7b-warm-Q3_K_M.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-Q3_K_M.gguf) | Q3_K_M | 3.89 | 3.28 GB| 5.37 GB | very small, high quality loss |
387
+ | [normistral-7b-warm-Q4_K_M.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-Q4_K_M.gguf) | Q4_K_M | 4.83 | 4.07 GB| 6.16 GB | medium, balanced quality - recommended |
388
+ | [normistral-7b-warm-Q5_K_M.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-Q5_K_M.gguf) | Q5_K_M | 5.67 | 4.78 GB| 6.87 GB | large, very low quality loss - recommended |
389
+ | [normistral-7b-warm-Q6_K.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-Q6_K.gguf) | Q6_K | 6.56 | 5.54 GB| 7.63 GB | very large, extremely low quality loss |
390
+ | [normistral-7b-warm-Q8_0.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-Q8_0.gguf) | Q8_0 | 8.50 | 7.17 GB| 9.26 GB | very large, extremely low quality loss - not recommended |
391
+
392
+ ### How to run from Python code
393
+
394
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) for example.
395
+
396
+ #### How to load this model in Python code, using llama-cpp-python
397
+
398
+ For full documentation, please see: [llama-cpp-python docs](https://llama-cpp-python.readthedocs.io/en/latest/).
399
+
400
+ #### First install the package
401
+
402
+ Run one of the following commands, according to your system:
403
+
404
+ ```shell
405
+ # Base llama-ccp-python with no GPU acceleration
406
+ pip install llama-cpp-python
407
+ # With NVidia CUDA acceleration
408
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
409
+ # Or with OpenBLAS acceleration
410
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
411
+ # Or with CLBLast acceleration
412
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
413
+ # Or with AMD ROCm GPU acceleration (Linux only)
414
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
415
+ # Or with Metal GPU acceleration for macOS systems only
416
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
417
+
418
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
419
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
420
+ pip install llama-cpp-python
421
+ ```
422
+
423
+ #### Simple llama-cpp-python example code
424
+
425
+ ```python
426
+ from llama_cpp import Llama
427
+
428
+ # Directly from huggingface-hub (requires huggingface-hub to be installed)
429
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
430
+ llm = Llama.from_pretrained(
431
+ repo_id="norallm/normistral-7b-warm", # HuggingFace repository containing the GGUF files.
432
+ filename="*Q4_K_M.gguf", # suffix of the filename containing the level of quantization.
433
+ n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
434
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
435
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
436
+ )
437
+
438
+ # Simple inference example
439
+ output = llm(
440
+ "Engelsk: Hello everyone! I'm a language model, how are you doing today?\nBokmål:", # Prompt
441
+ max_tokens=512, # Generate up to 512 tokens
442
+ stop=["</s>"], # Example stop token
443
+ echo=True, # Whether to echo the prompt
444
+ temperature=0.3 # Temperature to set, for Q3_K_M, Q4_K_M, Q5_K_M, and Q6_0 it is recommended to set it relatively low.
445
+ )
446
  ```