|
--- |
|
base_model: cpierse/wav2vec2-large-xlsr-53-esperanto |
|
datasets: |
|
- audiofolder |
|
library_name: transformers |
|
license: apache-2.0 |
|
metrics: |
|
- wer |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: TrainEsperanto |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: audiofolder |
|
type: audiofolder |
|
config: default |
|
split: None |
|
args: default |
|
metrics: |
|
- type: wer |
|
value: 0.1883670612192949 |
|
name: Wer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# TrainEsperanto |
|
|
|
This model is a fine-tuned version of [cpierse/wav2vec2-large-xlsr-53-esperanto](https://huggingface.co/cpierse/wav2vec2-large-xlsr-53-esperanto) on the audiofolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0591 |
|
- Wer: 0.1884 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:| |
|
| 5.9902 | 2.6596 | 500 | 8.6294 | 1.0309 | |
|
| 3.3 | 5.3191 | 1000 | 2.9688 | 1.0 | |
|
| 2.8744 | 7.9787 | 1500 | 2.4117 | 1.0 | |
|
| 0.7214 | 10.6383 | 2000 | 0.1825 | 0.2954 | |
|
| 0.1552 | 13.2979 | 2500 | 0.0689 | 0.1971 | |
|
| 0.1038 | 15.9574 | 3000 | 0.0621 | 0.1932 | |
|
| 0.092 | 18.6170 | 3500 | 0.0624 | 0.1900 | |
|
| 0.0877 | 21.2766 | 4000 | 0.0615 | 0.1926 | |
|
| 0.082 | 23.9362 | 4500 | 0.0609 | 0.1899 | |
|
| 0.0779 | 26.5957 | 5000 | 0.0591 | 0.1887 | |
|
| 0.077 | 29.2553 | 5500 | 0.0591 | 0.1884 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.5.1 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.20.1 |
|
|