|
--- |
|
base_model: ai-forever/ruT5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: my_t5_small_test |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# my_t5_small_test |
|
|
|
This model is a fine-tuned version of [ai-forever/ruT5-base](https://huggingface.co/ai-forever/ruT5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2898 |
|
- Bleu: 5.3699 |
|
- Gen Len: 16.6005 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| |
|
| No log | 1.0 | 114 | 2.7730 | 3.0092 | 15.861 | |
|
| No log | 2.0 | 228 | 2.5655 | 3.9211 | 16.0397 | |
|
| No log | 3.0 | 342 | 2.4573 | 4.7281 | 16.4218 | |
|
| No log | 4.0 | 456 | 2.3735 | 5.0843 | 16.2531 | |
|
| 3.5284 | 5.0 | 570 | 2.3490 | 5.7483 | 16.5533 | |
|
| 3.5284 | 6.0 | 684 | 2.3254 | 5.6331 | 16.4963 | |
|
| 3.5284 | 7.0 | 798 | 2.3095 | 5.6877 | 16.6898 | |
|
| 3.5284 | 8.0 | 912 | 2.2949 | 5.6496 | 16.5583 | |
|
| 2.6344 | 9.0 | 1026 | 2.2913 | 5.4792 | 16.6452 | |
|
| 2.6344 | 10.0 | 1140 | 2.2898 | 5.3699 | 16.6005 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|