Whisper Large V2 - Swiss German

This model is a fine-tuned version of openai/whisper-large-v2 on the SwissDialDataset_ETH dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2462
  • Wer Ortho: 0.2459
  • Wer: 0.1577
  • Cer: 0.0373

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 5
  • training_steps: 250
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer Cer
0.4177 0.2460 50 0.3617 0.3915 0.3244 0.1232
0.285 0.4920 100 0.3100 0.2905 0.2013 0.0409
0.2659 0.7380 150 0.2632 0.3753 0.2909 0.4770
0.2401 0.9840 200 0.2372 0.2541 0.1568 0.0321
0.1192 1.2300 250 0.2462 0.2459 0.1577 0.0373

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
49
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for notebotIE/whisper-large-v2-swiss-german

Finetuned
(191)
this model

Evaluation results