Leo1212 commited on
Commit
c72ce2c
·
verified ·
1 Parent(s): 7629750

End of training

Browse files
Files changed (1) hide show
  1. README.md +12 -10
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Wer
24
  type: wer
25
- value: 0.14542967859585137
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,10 +32,10 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the SwissDialDataset_ETH dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.2648
36
- - Wer Ortho: 0.2518
37
- - Wer: 0.1454
38
- - Cer: 0.0304
39
 
40
  ## Model description
41
 
@@ -55,9 +55,11 @@ More information needed
55
 
56
  The following hyperparameters were used during training:
57
  - learning_rate: 1e-05
58
- - train_batch_size: 16
59
- - eval_batch_size: 16
60
  - seed: 42
 
 
61
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
62
  - lr_scheduler_type: constant_with_warmup
63
  - lr_scheduler_warmup_steps: 50
@@ -68,13 +70,13 @@ The following hyperparameters were used during training:
68
 
69
  | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | Cer |
70
  |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|
71
- | 0.1387 | 1.2255 | 250 | 0.2670 | 0.2478 | 0.1523 | 0.0302 |
72
- | 0.0781 | 2.4510 | 500 | 0.2648 | 0.2518 | 0.1454 | 0.0304 |
73
 
74
 
75
  ### Framework versions
76
 
77
  - Transformers 4.46.3
78
  - Pytorch 2.5.1+cu121
79
- - Datasets 3.1.0
80
  - Tokenizers 0.20.3
 
22
  metrics:
23
  - name: Wer
24
  type: wer
25
+ value: 0.23455664463186687
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the SwissDialDataset_ETH dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.2463
36
+ - Wer Ortho: 0.3206
37
+ - Wer: 0.2346
38
+ - Cer: 0.0795
39
 
40
  ## Model description
41
 
 
55
 
56
  The following hyperparameters were used during training:
57
  - learning_rate: 1e-05
58
+ - train_batch_size: 4
59
+ - eval_batch_size: 4
60
  - seed: 42
61
+ - gradient_accumulation_steps: 4
62
+ - total_train_batch_size: 16
63
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
64
  - lr_scheduler_type: constant_with_warmup
65
  - lr_scheduler_warmup_steps: 50
 
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | Cer |
72
  |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|
73
+ | 0.1296 | 1.2300 | 250 | 0.2512 | 0.3233 | 0.3987 | 0.2304 |
74
+ | 0.0737 | 2.4600 | 500 | 0.2463 | 0.3206 | 0.2346 | 0.0795 |
75
 
76
 
77
  ### Framework versions
78
 
79
  - Transformers 4.46.3
80
  - Pytorch 2.5.1+cu121
81
+ - Datasets 3.2.0
82
  - Tokenizers 0.20.3