|
--- |
|
license: mit |
|
tags: |
|
- audio-feature-extraction |
|
- speech-language-models |
|
- gpt4-o |
|
- tokenizer |
|
- codec-representation |
|
- text-to-speech |
|
- automatic-speech-recognition |
|
--- |
|
# WavTokenizer: SOTA Discrete Codec Models With Forty Tokens Per Second for Audio Language Modeling |
|
|
|
|
|
|
|
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2408.16532) |
|
[![demo](https://img.shields.io/badge/WanTokenizer-Demo-red)](https://wavtokenizer.github.io/) |
|
[![model](https://img.shields.io/badge/%F0%9F%A4%97%20WavTokenizer-Models-blue)](https://huggingface.co/novateur/WavTokenizer) |
|
|
|
|
|
|
|
### ππ with WavTokenizer, you can represent speech, music, and audio with only 40 tokens per second! |
|
### ππ with WavTokenizer, You can get strong reconstruction results. |
|
### ππ WavTokenizer owns rich semantic information and is build for audio language models such as GPT4-o. |
|
|
|
# π₯ News |
|
- *2024.08*: We release WavTokenizer on arxiv. |
|
|
|
![result](result.png) |
|
|
|
|
|
## Installation |
|
|
|
To use WavTokenizer, install it using: |
|
|
|
```bash |
|
conda create -n wavtokenizer python=3.9 |
|
conda activate wavtokenizer |
|
pip install -r requirements.txt |
|
``` |
|
|
|
## Infer |
|
|
|
### Part1: Reconstruct audio from raw wav |
|
|
|
```python |
|
|
|
from encoder.utils import convert_audio |
|
import torchaudio |
|
import torch |
|
from decoder.pretrained import WavTokenizer |
|
|
|
|
|
device=torch.device('cpu') |
|
|
|
config_path = "./configs/xxx.yaml" |
|
model_path = "./xxx.ckpt" |
|
audio_outpath = "xxx" |
|
|
|
wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path) |
|
wavtokenizer = wavtokenizer.to(device) |
|
|
|
|
|
wav, sr = torchaudio.load(audio_path) |
|
wav = convert_audio(wav, sr, 24000, 1) |
|
bandwidth_id = torch.tensor([0]) |
|
wav=wav.to(device) |
|
features,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id) |
|
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id) |
|
torchaudio.save(audio_outpath, audio_out, sample_rate=24000, encoding='PCM_S', bits_per_sample=16) |
|
``` |
|
|
|
|
|
### Part2: Generating discrete codecs |
|
```python |
|
|
|
from encoder.utils import convert_audio |
|
import torchaudio |
|
import torch |
|
from decoder.pretrained import WavTokenizer |
|
|
|
device=torch.device('cpu') |
|
|
|
config_path = "./configs/xxx.yaml" |
|
model_path = "./xxx.ckpt" |
|
|
|
wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path) |
|
wavtokenizer = wavtokenizer.to(device) |
|
|
|
wav, sr = torchaudio.load(audio_path) |
|
wav = convert_audio(wav, sr, 24000, 1) |
|
bandwidth_id = torch.tensor([0]) |
|
wav=wav.to(device) |
|
_,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id) |
|
print(discrete_code) |
|
``` |
|
|
|
|
|
|
|
### Part3: Audio reconstruction through codecs |
|
```python |
|
# audio_tokens [n_q,1,t]/[n_q,t] |
|
features = wavtokenizer.codes_to_features(audio_tokens) |
|
bandwidth_id = torch.tensor([0]) |
|
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id) |
|
``` |
|
|
|
## Available models |
|
π€ links to the Huggingface model hub. |
|
|
|
| Model name | HuggingFace | Corpus | Token/s | Domain | Open-Source | |
|
|:--------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:|:---------:|:----------:|:------:| |
|
| WavTokenizer-small-600-24k-4096 | [π€](https://huggingface.co/novateur/WavTokenizer/blob/main/WavTokenizer_small_600_24k_4096.ckpt) | LibriTTS | 40 | Speech | β | |
|
| WavTokenizer-small-320-24k-4096 | [π€](https://huggingface.co/novateur/WavTokenizer/blob/main/WavTokenizer_small_320_24k_4096.ckpt) | LibriTTS | 75 | Speech | β| |
|
| WavTokenizer-medium-600-24k-4096 | [π€](https://github.com/jishengpeng/wavtokenizer) | 10000 Hours | 40 | Speech, Audio, Music | Coming Soon| |
|
| WavTokenizer-medium-320-24k-4096 | [π€](https://github.com/jishengpeng/wavtokenizer) | 10000 Hours | 75 | Speech, Audio, Music | Coming Soon| |
|
| WavTokenizer-large-600-24k-4096 | [π€](https://github.com/jishengpeng/wavtokenizer) | 80000 Hours | 40 | Speech, Audio, Music | Coming Soon| |
|
| WavTokenizer-large-320-24k-4096 | [π€](https://github.com/jishengpeng/wavtokenizer) | 80000 Hours | 75 | Speech, Audio, Music | Coming Soon | |
|
|
|
|
|
|
|
## Training |
|
|
|
### Step1: Prepare train dataset |
|
```python |
|
# Process the data into a form similar to ./data/demo.txt |
|
``` |
|
|
|
### Step2: Modifying configuration files |
|
```python |
|
# ./configs/xxx.yaml |
|
# Modify the values of parameters such as batch_size, filelist_path, save_dir, device |
|
``` |
|
|
|
### Step3: Start training process |
|
Refer to [Pytorch Lightning documentation](https://lightning.ai/docs/pytorch/stable/) for details about customizing the |
|
training pipeline. |
|
|
|
```bash |
|
cd ./WavTokenizer |
|
python train.py fit --config ./configs/xxx.yaml |
|
``` |
|
|
|
|
|
## Citation |
|
|
|
If this code contributes to your research, please cite our work, Language-Codec and WavTokenizer: |
|
|
|
``` |
|
@article{ji2024wavtokenizer, |
|
title={Wavtokenizer: an efficient acoustic discrete codec tokenizer for audio language modeling}, |
|
author={Ji, Shengpeng and Jiang, Ziyue and Wang, Wen and Chen, Yifu and Fang, Minghui and Zuo, Jialong and Yang, Qian and Cheng, Xize and Wang, Zehan and Li, Ruiqi and others}, |
|
journal={arXiv preprint arXiv:2408.16532}, |
|
year={2024} |
|
} |
|
|
|
@article{ji2024language, |
|
title={Language-codec: Reducing the gaps between discrete codec representation and speech language models}, |
|
author={Ji, Shengpeng and Fang, Minghui and Jiang, Ziyue and Huang, Rongjie and Zuo, Jialung and Wang, Shulei and Zhao, Zhou}, |
|
journal={arXiv preprint arXiv:2402.12208}, |
|
year={2024} |
|
} |
|
``` |