Swift Strike Aero Backup Public Inspirational :
https://www.youtube.com/playlist?list=PLIz-ib4zQENy3JQlhU1RYjmSzGOIHsPHQ
Swiftstrike Aero Model (Falcon Pruned Model)
This model is a fine-tuned version of the Swiftstrike Aero Model, specifically tailored for context-aware keyword searches related to culture. It's designed to process 1-block contexts, equivalent to approximately 384 tokens or a single paragraph of wikipedia standard(common length paragraph).
Training Data (Part 1 Culture Context Wikipedia)
The model was trained on a multi-stage dataset derived from Wikipedia's culture-related content:
- Base Dataset:
- 13,000 rows of capitalized and lowercase words extracted from Wikipedia's culture sentences.
- Sentence-Level Dataset:
- 2,300 rows of full sentences from Wikipedia's culture data.
- 1-Block Context Dataset:
- 500 rows of 1-block contexts (approximately 1 paragraph) from Wikipedia's culture data.
Dataset Organization
The dataset is structured hierarchically, with each level representing an increasing level of complexity:
- Part: Individual components or elements.
- Merge Part: Combination of two or more parts.
- Fragment: Combination of two or more merge parts.
- Sub-Unit: Combination of two or more fragments.
- Unit: Combination of two or more sub-units.
- Super-Unit: Combination of two or more units.
- Mega-Unit: Combination of two or more super-units.
How to Use
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from IPython.display import display, HTML
# prompt: load model and generate example
model_name = "nqzfaizal77ai/sa-145m-en-wikipedia-culture-part1-1bc"
model = AutoModelForCausalLM.from_pretrained(model_name,trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name,trust_remote_code=True)
torch.manual_seed(3077)
input_text = "The cultural impact of the internet is"
inputs = tokenizer(input_text, return_tensors="pt")
# Example usage stochastic decode
output = model.generate(**inputs,
do_sample=True,
top_k=50,
top_p=0.95,
repetition_penalty=1.2,
max_length=100)
# Decode the generated output to a string
generated_text = tokenizer.decode(output[0], skip_special_tokens=True).replace("\n", "<br>")
def print_with_border(text):
"""Prints the given text with a border around it."""
from IPython.display import display, HTML
display(HTML(f"<div style='border: 1px solid black; padding: 10px;'>{text}</div>"))
print_with_border(generated_text)
# Example usage greedy decode
output = model.generate(**inputs,
do_sample=False,
max_length=100)
# Decode the generated output to a string
generated_text = tokenizer.decode(output[0], skip_special_tokens=True).replace("\n", "<br>")
def print_with_border(text):
"""Prints the given text with a border around it."""
from IPython.display import display, HTML
display(HTML(f"<div style='border: 1px solid black; padding: 10px;'>{text}</div>"))
print_with_border(generated_text)
- Downloads last month
- 70
Model tree for nqzfaizal77ai/sa-145m-en-wikipedia-culture-part1-1bc
Base model
tiiuae/falcon-7b
Finetuned
nqzfaizal77ai/swiftstrike-aero-init-580m