hubert-large-ls960-ft

This model is a fine-tuned version of facebook/hubert-large-ls960-ft on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4850
  • Wer: 0.7884
  • Per: 0.7945

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Per
14.5096 1.0 1637 3.3563 1.0 1.0
3.3754 2.0 3274 3.3135 1.0 1.0
3.3037 3.0 4911 3.2654 1.0 1.0
3.2641 4.0 6548 3.2260 1.0 1.0
3.1723 5.0 8185 3.1158 0.9975 0.9980
3.0864 6.0 9822 3.0251 0.9105 0.9234
3.0205 7.0 11459 2.9357 0.8957 0.9068
2.9474 8.0 13096 2.8523 0.8456 0.8528
2.883 9.0 14733 2.7752 0.8260 0.8323
2.8246 10.0 16370 2.7173 0.8138 0.8202
2.7959 11.0 18007 2.6877 0.8074 0.8139
2.7595 12.0 19644 2.6459 0.8131 0.8224
2.7335 13.0 21281 2.6208 0.8050 0.8120
2.7014 14.0 22918 2.5800 0.7986 0.8054
2.6792 15.0 24555 2.5604 0.7989 0.8058
2.6539 16.0 26192 2.5289 0.7929 0.7985
2.6316 17.0 27829 2.5119 0.7943 0.8018
2.6212 18.0 29466 2.4965 0.7931 0.8005
2.6114 19.0 31103 2.4890 0.7894 0.7959
2.6028 20.0 32740 2.4850 0.7884 0.7945

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for nrshoudi/hubert-large-ls960-ft

Finetuned
(22)
this model