|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: wav2vec2-large-xls-r-300m-Arabic-phoneme-based-MDD |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-Arabic-phoneme-based-MDD |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7800 |
|
- Per: 0.1135 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 6 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 250 |
|
- num_epochs: 40.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Per | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 4.5228 | 1.0 | 546 | 2.1723 | 0.6314 | |
|
| 1.2389 | 2.0 | 1093 | 0.9571 | 0.2597 | |
|
| 0.7931 | 3.0 | 1640 | 0.8440 | 0.2246 | |
|
| 0.6438 | 4.0 | 2187 | 0.7831 | 0.2045 | |
|
| 0.5584 | 5.0 | 2733 | 0.7660 | 0.1922 | |
|
| 0.5062 | 6.0 | 3280 | 0.7193 | 0.1724 | |
|
| 0.4596 | 7.0 | 3827 | 0.7373 | 0.1720 | |
|
| 0.4227 | 8.0 | 4374 | 0.6829 | 0.1629 | |
|
| 0.3832 | 9.0 | 4920 | 0.7181 | 0.1608 | |
|
| 0.3617 | 10.0 | 5467 | 0.7043 | 0.1591 | |
|
| 0.3495 | 11.0 | 6014 | 0.7295 | 0.1566 | |
|
| 0.3282 | 12.0 | 6561 | 0.6897 | 0.1508 | |
|
| 0.3086 | 13.0 | 7107 | 0.7353 | 0.1554 | |
|
| 0.2911 | 14.0 | 7654 | 0.7144 | 0.1477 | |
|
| 0.2801 | 15.0 | 8201 | 0.6988 | 0.1442 | |
|
| 0.2658 | 16.0 | 8748 | 0.7061 | 0.1475 | |
|
| 0.252 | 17.0 | 9294 | 0.7090 | 0.1403 | |
|
| 0.2487 | 18.0 | 9841 | 0.7032 | 0.1363 | |
|
| 0.2363 | 19.0 | 10388 | 0.7087 | 0.1395 | |
|
| 0.222 | 20.0 | 10935 | 0.6982 | 0.1345 | |
|
| 0.2152 | 21.0 | 11481 | 0.6964 | 0.1361 | |
|
| 0.2063 | 22.0 | 12028 | 0.7246 | 0.1341 | |
|
| 0.1958 | 23.0 | 12575 | 0.7331 | 0.1347 | |
|
| 0.1866 | 24.0 | 13122 | 0.7493 | 0.1326 | |
|
| 0.1786 | 25.0 | 13668 | 0.7536 | 0.1381 | |
|
| 0.1751 | 26.0 | 14215 | 0.7345 | 0.1308 | |
|
| 0.169 | 27.0 | 14762 | 0.7274 | 0.1251 | |
|
| 0.1616 | 28.0 | 15309 | 0.7590 | 0.1293 | |
|
| 0.1589 | 29.0 | 15855 | 0.7330 | 0.1243 | |
|
| 0.1495 | 30.0 | 16402 | 0.7517 | 0.1228 | |
|
| 0.1415 | 31.0 | 16949 | 0.7454 | 0.1208 | |
|
| 0.1376 | 32.0 | 17496 | 0.7827 | 0.1254 | |
|
| 0.1337 | 33.0 | 18042 | 0.7523 | 0.1221 | |
|
| 0.128 | 34.0 | 18589 | 0.7752 | 0.1208 | |
|
| 0.1262 | 35.0 | 19136 | 0.7716 | 0.1174 | |
|
| 0.1196 | 36.0 | 19683 | 0.7620 | 0.1164 | |
|
| 0.1161 | 37.0 | 20229 | 0.7792 | 0.1164 | |
|
| 0.1117 | 38.0 | 20776 | 0.7800 | 0.1140 | |
|
| 0.1103 | 39.0 | 21323 | 0.7716 | 0.1134 | |
|
| 0.1074 | 39.95 | 21840 | 0.7800 | 0.1135 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.13.3 |
|
|