|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec_arabic_mdd |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec_arabic_mdd |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3501 |
|
- Wer: 0.0432 |
|
- Per: 0.0327 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Per | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| |
|
| 8.1087 | 1.0 | 1637 | 3.1701 | 1.0 | 1.0 | |
|
| 1.1869 | 2.0 | 3274 | 0.4045 | 0.0800 | 0.0646 | |
|
| 0.2 | 3.0 | 4911 | 0.3260 | 0.0591 | 0.0464 | |
|
| 0.1283 | 4.0 | 6548 | 0.3042 | 0.0618 | 0.0475 | |
|
| 0.1037 | 5.0 | 8185 | 0.2727 | 0.0531 | 0.0410 | |
|
| 0.0844 | 6.0 | 9822 | 0.3184 | 0.0543 | 0.0409 | |
|
| 0.0738 | 7.0 | 11459 | 0.2886 | 0.0485 | 0.0366 | |
|
| 0.0613 | 8.0 | 13096 | 0.3345 | 0.0488 | 0.0374 | |
|
| 0.0573 | 9.0 | 14733 | 0.3469 | 0.0505 | 0.0394 | |
|
| 0.0514 | 10.0 | 16370 | 0.3245 | 0.0510 | 0.0386 | |
|
| 0.0469 | 11.0 | 18007 | 0.3094 | 0.0492 | 0.0374 | |
|
| 0.0375 | 12.0 | 19644 | 0.3656 | 0.0521 | 0.0392 | |
|
| 0.0356 | 13.0 | 21281 | 0.3296 | 0.0472 | 0.0356 | |
|
| 0.0291 | 14.0 | 22918 | 0.3301 | 0.0448 | 0.0336 | |
|
| 0.0242 | 15.0 | 24555 | 0.3575 | 0.0460 | 0.0357 | |
|
| 0.0216 | 16.0 | 26192 | 0.3376 | 0.0443 | 0.0335 | |
|
| 0.0208 | 17.0 | 27829 | 0.3688 | 0.0436 | 0.0332 | |
|
| 0.018 | 18.0 | 29466 | 0.3673 | 0.0445 | 0.0340 | |
|
| 0.0164 | 19.0 | 31103 | 0.3576 | 0.0432 | 0.0327 | |
|
| 0.0128 | 20.0 | 32740 | 0.3501 | 0.0432 | 0.0327 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|