wav2vec_new

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2743
  • Wer: 0.1376
  • Cer: 0.1333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
32.6273 1.0 26 32.5059 0.9394 0.7539
27.4795 2.0 52 22.9788 0.9996 0.9996
16.8834 3.0 78 7.6200 1.0 1.0
6.2939 4.0 104 4.0929 1.0 1.0
3.5881 5.0 130 3.4107 1.0 1.0
3.3449 6.0 156 3.2649 1.0 1.0
3.2703 7.0 182 3.2285 1.0 1.0
3.253 8.0 208 3.2188 1.0 1.0
3.2074 9.0 234 3.1777 1.0 1.0
3.2992 10.0 260 3.1773 1.0 1.0
3.2007 11.0 286 3.1827 1.0 1.0
3.1878 12.0 312 3.1493 1.0 1.0
3.1495 13.0 338 3.0784 1.0 1.0
3.082 14.0 364 2.9135 1.0 1.0
2.8619 15.0 390 2.7388 1.0 1.0
2.6435 16.0 416 2.4690 0.8928 0.9056
2.0885 17.0 442 1.7109 0.8447 0.8546
1.622 18.0 468 1.0533 0.4430 0.4414
0.8878 19.0 494 0.5311 0.2669 0.2651
0.4516 20.0 520 0.2743 0.1376 0.1333

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
19
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nrshoudi/wav2vec_new

Finetuned
(219)
this model