nthakur's picture
End of training
eb2d31a verified
---
license: llama3
library_name: peft
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B-Instruct
datasets:
- nthakur/nomiracl-instruct
model-index:
- name: Meta-Llama-3-8B-Instruct-nomiracl-sft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Meta-Llama-3-8B-Instruct-nomiracl-sft
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the nthakur/nomiracl-instruct dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6358
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.6576 | 0.2981 | 200 | 1.6656 |
| 1.6447 | 0.5961 | 400 | 1.6409 |
| 1.6245 | 0.8942 | 600 | 1.6358 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1